4 research outputs found

    Homing and reparative effect of intra-articular injection of autologus mesenchymal stem cells in osteoarthritic animal model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>This work aimed to study the homing evidence and the reparative effect of mesenchymal stem cells (MSCs) in the healing process of induced osteoarthritis in experimental animal model (donkeys).</p> <p>Methods</p> <p>Twenty-seven donkeys were equally divided into 3 groups based on the observation period after induction of arthritis (3, 6 and 9 weeks) to achieve different degrees of osteoarthritis. Each group was subdivided into three subgroups of three animals each based on the follow-up period (1, 2 and 6 months) after treatment. The induction was done through intra-articular (IA) injection of 2 ml of Amphotericin-B in both carpal joints. MSCs were harvested in a separate procedure, labeled with green fluorescent protein (GFP) using monster GFP vector and suspended in hyaluronic acid for IA injection. Treatment approaches consisted of cell-treatment using MSCs suspended in 3 ml of hyaluronic acid (HA) for the right carpal joint; and using the same amount of (HA) but without MSCs for the left contralateral carpal joint to serve as a control. Animals were assessed clinically and radiologically before and after treatment. Synovial fluid was also evaluated. Histopathologically; articular cartilage structural changes, reduction of articular cartilage matrix staining, osteophyte formation, and subchondral bone plate thickening were graded. Data was summarized using median and percentile for scores of histopathologic grading. Comparison between groups was done using non-parametric Mann Whitney test.</p> <p>Results</p> <p>The reparative effect of MSCs was significant both clinically and radiologically in all treated groups (P < 0.05) compared to the control groups. Fluorescence microscopy of sections of the cell-treated joints of all animals indicated that the GFP-transduced injected cells have participated effectively in the reparative process of the damaged articular surface and have integrated within the existing articular cartilage. The cells were associated with the surface of the cartilage and, were also detected in the interior.</p> <p>Conclusions</p> <p>Homing was confirmed by the incorporation of injected GFP-labeled MSCs within the repaired newly formed cartilage. Significant recovery proves that the use of IA injection of autologous MSCs is a viable and a practical option for treating different degrees of osteoarthritis.</p

    Comparison between stem cell therapy and stem cell derived exosomes on induced multiple sclerosis in dogs

    No full text
    Abstract Background Multiple sclerosis (MS) is a chronic condition that primarily manifests as demyelination of neuronal axons in the central nervous system, due to the loss or attack of oligodendroglia cells that form myelin. Stem cell therapy has shown promising results for the treatment of MS due to its capability to halt the immune attack, stop apoptosis and axonal degeneration, and differentiate into oligodendrocytes. Stem cell-derived Exosomes (Exosomes) have shown great capabilities for neuronal diseases as they have growth factors, complex sets of miRNA, enzymes, proteins, major peptides, lipids, and macromolecules with anti-inflammatory, angiogenesis, and neurogenesis activities. Methods This study aimed to compare the healing properties of stem cells, against Exosomes for the treatment of an experimentally induced MS dog model. Dog models of MS received either a single treatment of stem cells or a single treatment of Exosomes intrathecally and the treatment process was evaluated clinically, radiologically, histopathologically, and electron microscopy and cerebrospinal fluid analysis. Results showed marked amelioration of the clinical signs in both treated groups compared to the control one, magnetic resonance scans showed the resolution of the hyperintense lesions at the end of the study period, the histopathology and electron microscopy showed marked healing properties and remyelination in treated groups with superiority of the stem cells compared to Exosomes. Conclusions Although stem cell results were superior to Exosomes therapy; Exosomes have proven to be effective and safe important actors in myelin regeneration, and their use in diseases like MS helps to stimulate remyelination

    Effect of combined intrathecal/intravenous injection of bone marrow derived stromal cells in platelet-rich plasma on spinal cord injury in companion animals

    Get PDF
    Background: Companion animals are prone to spinal cord injuries commonly associated with severe locomotor and sensory&nbsp; complications, which can escalate to a state of irreversible paralysis. Stem cell therapies propose a hope for treating spinal cord injuries via differentiation into neurons and associated glial cells, halting the immune attacks, inhibiting apoptosis and necrosis, and secretion of neurotrophic factors that stimulate the regeneration process. Aim: The study aims to evaluate the use of autologous bone marrow derived stromal cells in platelet-rich plasma carrier for selected clinical cases having chronic spinal cord injuries in dogs and cats via a one-time combined intrathecal/ intravenous injection. Methods: Cells were injected in five dogs and three cats suffering from disc protrusion leading to spinal cord injury and in thosewho did not respond to conventional treatment during a clinical trial. Results: Results indicated that the transplanted cells led to the restoration of the weight bearing locomotor function and spinal reflexes in a period less than 90 days with physical rehabilitation. The treatment showed minor changes in the magnetic resonance images of&nbsp; extruded discs. Conclusion: This study concluded that the combined intrathecal/intravenous injection of bone marrow stromal cells is a safe and promising procedure for treating chronic spinal cord injuries in companion animals

    Effect of combined intrathecal/intravenous injection of bone marrow derived stromal cells in platelet rich plasma on spinal cord injury in companion animals

    Get PDF
    Background: Companion animals are prone to spinal cord injuries commonly associated with severe locomotor and sensory complications, which can escalate to a state of irreversible paralysis. Stem cell therapies propose a hope for treating spinal cord injuries via differentiation into neurons and associated glial cells, halting the immune attacks, inhibiting apoptosis and necrosis, and secretion of neurotrophic factors that stimulate the regeneration process. Aim: The study aims to evaluate the use of autologous bone marrow derived stromal cells in Platelet Rich Plasma carrier for selected clinical cases having chronic spinal cord injuries in dogs and cats via a one-time combined intrathecal/intravenous injection. Methods: Cells were injected in 5 dogs and 3 cats suffering from disc protrusion leading to spinal cord injury and in thosewho did not respond to conventional treatment during a clinical trial. Results: Results indicated that the transplanted cells led to the restoration of the weight bearing locomotor function and spinal reflexes in a period less than 90 days with physical rehabilitation. The treatment showed minor changes in the magnetic resonance images of extruded discs. Conclusion: This study concluded that the combined intrathecal/intravenous injection of bone marrow stromal cells is a safe and promising procedure for treating chronic spinal cord injuries in companion animals
    corecore