42 research outputs found

    Fan and Ventilation Rate Monitoring of Cage-Free Layer Houses in California

    Get PDF
    Ventilation rates were continuously monitored in two cage-free layer houses located in California from March 1, 2012 to May 13, 2013. The average number of brown Lohmann laying hens in each house was 33,300. Temperature, relative humidity, static pressure, and running status of 48 ventilation fans were continuously monitored and recorded every minute. Regression models were developed to relate house temperature and ventilation rate to inlet air temperature, and to relate airflow rate to building static pressure (R2 = 0.98). Results showed that the daily mean ventilation rate per hen ranged from 1.91 to 8.72 m3 h-1 hen-1, averaging at 4.49 ±1.53 m3 h-1 hen-1. The standard uncertainty of daily mean ventilation rate was determined to be 3.7%. The 91-cm and 130-cm fans were found to perform at 82% and 63% of the manufacturer rated airflow rates, respectively. The minimum and maximum static pressure was 11.0 and 50.6 Pa, respectively, corresponding to 2 and 16 running tunnel fans. When the house temperature exceeded 30ºC, an evaporative cooling system was activated, which could reduce the inlet air temperature by 6.3ºC and concurrently increased the indoor air humidity ratio by 3.4 g per kg dry air. Cooling pad efficiency was 66%. The sidewall fans and tunnel fans were operated at 65% and 20% of the total time when layers occupied the houses. The new rational formula to calculate dry base ventilation rates was developed based upon the ratio of water vapor volume to moist air volume. The developed models and data collected in this research can be used to calculate the ventilation rates in cage-free layer houses so that it can be possible to assure healthy conditions needed for layers. They can also be used in the design of cage free houses and in the calculations of emissions of air pollutants from these houses

    Anaerobic digestion of screenings for biogas recovery

    Get PDF
    Screenings comprise untreatable solid materials that have found their way into the sewer. They are removed during preliminary treatment at the inlet work of any wastewater treatment process using a unit operation termed as a screen and at present are disposed of to landfill. These materials, if not removed, will damage mechanical equipment due to its heterogeneity and reduce overall treatment process, reliability and effectiveness. That is why this material is retained and prevented from entering the treatment system before finally being disposed of. The amount of biodegradable organic matter in screenings often exceeds the upper limit and emits a significant amount of greenhouse gases during biodegradation on landfill. Nutrient release can cause a serious problem of eutrophication phenomena in receiving waters and a deterioration of water quality. Disposal of screenings on landfill also can cause odour problem due to putrescible nature of some of the solid material. In view of the high organic content of screenings, anaerobic digestion method may not only offer the potential for energy recovery but also nutrient. In this study, the anaerobic digestion was performed for 30,days, at controlled pH and temperature, using different dry solids concentrations of screenings to study the potential of biogas recovery in the form of methane. It was found screenings have physical characteristics of 30% total solids and 93% volatile solids, suggesting screenings are a type of waste with high dry solids and organic contents. Consistent pH around pH 6.22 indicates anaerobic digestion of screenings needs minimum pH correction. The biomethane potential tests demonstrated screenings were amenable to anaerobic digestion with methane yield of 355,m3/kg VS, which is comparable to the previous results. This study shows that anaerobic digestion is not only beneficial for waste treatment but also to turn waste into useful resources

    Production and Characterization of Biochar from Almond Shells

    No full text
    Biomass from specialty crops, including almonds, walnuts, and numerous others, serves as an important resource for energy and materials as agricultural systems evolve towards greater sustainability and circularity in management and operations. Biochar was produced from almond shells in a laboratory furnace at temperatures between 300 and 750 °C for residence times of 30 and 90 min with moisture contents of 5% to 15% wet basis. Response surface methodology was used to optimize the biochar yield. Feedstock and product temperatures were continuously monitored throughout the experiments. In addition, larger batches of biochar were also produced in a fixed-bed pilot-scale pyrolyzer. The yield of biochar was determined as a weight fraction of the amount of oven-dry almond shells used in each experiment. Physical and chemical characteristics of biochars were evaluated. Pyrolysis temperature and time were found to be the significant parameters affecting the biochar yield, with second-order regression models derived to fit yield results. As anticipated, highest biochar yields (65%) were obtained at a pyrolysis temperature of 300 °C and a pyrolysis time of 30 min due to the limited volatilization at this short residence at low temperature affecting torrefaction of the feedstock. The average biochar yield from the fixed-bed pilot-scale experiments was 39.5% and more closely aligned with the fixed carbon from standard proximate analyses. Higher pyrolysis temperatures resulted in higher C:N ratio and pH with the highest C:N ratio of 19:1 and pH of 10.0 obtained at a pyrolysis temperature of 750 °C for 90 min. Particle density increased with the increase of pyrolysis temperature. Results of this study can aid in predicting biochar yields from almond shells under different pyrolysis conditions and determining the amount of biochar required for different applications

    Biochar from Microwave Pyrolysis of Artemisia Slengensis: Characterization and Methylene Blue Adsorption Capacity

    No full text
    In this research, artemisia selengensis was used to produce biochar via microwave pyrolysis. The influence of pyrolysis temperature, heating rates, temperature holding time and additive on the biochar yield and adsorbability were all investigated. The results suggest that the biochar yield decreased with the increase of pyrolysis temperature while the adsorbability of the biochar increased with an increase of the pyrolysis temperature; the biochar yield and its adsorbability could achieve the desired value when the heating rate and temperature holding time were in a specific scope; the biochar yield decreased when an additive was added; the adsorbability of the biochar could be increased by adding ZnCl2 (metal chloride) and Na2CO3 (metal carbonate). According to the orthogonal experiments, the optimal conditions for biochar production were: pyrolysis temperature 550 °C, heating rate 2 °C/s, temperature holding time 15 min, without additive

    Fan and Ventilation Rate Monitoring of Cage-Free Layer Houses in California

    Get PDF
    Ventilation rates were continuously monitored in two cage-free layer houses located in California from March 1, 2012 to May 13, 2013. The average number of brown Lohmann laying hens in each house was 33,300. Temperature, relative humidity, static pressure, and running status of 48 ventilation fans were continuously monitored and recorded every minute. Regression models were developed to relate house temperature and ventilation rate to inlet air temperature, and to relate airflow rate to building static pressure (R2 = 0.98). Results showed that the daily mean ventilation rate per hen ranged from 1.91 to 8.72 m3 h-1 hen-1, averaging at 4.49 ±1.53 m3 h-1 hen-1. The standard uncertainty of daily mean ventilation rate was determined to be 3.7%. The 91-cm and 130-cm fans were found to perform at 82% and 63% of the manufacturer rated airflow rates, respectively. The minimum and maximum static pressure was 11.0 and 50.6 Pa, respectively, corresponding to 2 and 16 running tunnel fans. When the house temperature exceeded 30ºC, an evaporative cooling system was activated, which could reduce the inlet air temperature by 6.3ºC and concurrently increased the indoor air humidity ratio by 3.4 g per kg dry air. Cooling pad efficiency was 66%. The sidewall fans and tunnel fans were operated at 65% and 20% of the total time when layers occupied the houses. The new rational formula to calculate dry base ventilation rates was developed based upon the ratio of water vapor volume to moist air volume. The developed models and data collected in this research can be used to calculate the ventilation rates in cage-free layer houses so that it can be possible to assure healthy conditions needed for layers. They can also be used in the design of cage free houses and in the calculations of emissions of air pollutants from these houses.This article is published as Lin, Xingjun, Ruihong Zhang, Shumei Jiang, Hamed M. El-Mashad, and Hongwei Xin. "Fan and Ventilation Rate Monitoring of Cage-Free Layer Houses in California." Transactions of the ASABE 61, no. 6 (2018): 1939-1950. DOI: 10.13031/trans.12831. Posted with permission.</p

    Anaerobic Digestion and Alternative Manure Management Technologies for Methane Emissions Mitigation on Californian Dairies

    No full text
    California is the leading dairy state in the United States. The total sale of milk and its products represents about 6.3billionannuallyoutofthe6.3 billion annually out of the 50 billion generated from all agricultural production in the state. However, methane emissions from dairy manure and enteric fermentation represented nearly half of all annual methane emissions in California, with dairy manure accounting for 25%, and enteric fermentation for 20%. Methane emissions originating from manure are produced primarily from anaerobic settling basins and lagoons, which are the most common manure storage systems in the state. To achieve sustainability on dairy farms and to comply with state regulations for air and climate pollutants, dairy farms have implemented technologies such as anaerobic digestion and alternative manure management technologies. In addition, governmental incentive programs have been deployed to partially fund these technologies for eligible dairies in the state. The present article reviews the design and operations, effectiveness, and economics of the most common technologies employed in Californian dairies in reducing methane emissions. The technologies studied include anaerobic digesters, mechanical separators, compost-bedded pack barns, manure vacuuming followed by drying, and weeping walls. The current status and estimated effectiveness of government incentive programs are reviewed and recommendations for improvements presented. Finally, future trends and research needs for mitigating the emissions in Californian dairies are identified
    corecore