557 research outputs found
Using Interstellar Clouds to Search for Galactic PeVatrons: Gamma-ray Signatures from Supernova Remnants
Interstellar clouds can act as target material for hadronic cosmic rays;
gamma rays subsequently produced through inelastic proton-proton collisions and
spatially associated with such clouds can provide a key indicator of efficient
particle acceleration. However, even in the case that particle acceleration
proceeds up to PeV energies, the system of accelerator and nearby target
material must fulfil a specific set of conditions in order to produce a
detectable gamma-ray flux. In this study, we rigorously characterise the
necessary properties of both cloud and accelerator. By using available
Supernova Remnant (SNR) and interstellar cloud catalogues, we produce a ranked
shortlist of the most promising target systems, those for which a detectable
gamma-ray flux is predicted, in the case that particles are accelerated to PeV
energies in a nearby SNR. We discuss detection prospects for future facilities
including CTA, LHAASO and SWGO; and compare our predictions with known
gamma-ray sources. The four interstellar clouds with the brightest predicted
fluxes >100 TeV identified by this model are located at (l,b) = (330.05, 0.13),
(15.82, -0.46), (271.09, -1.26), and (21.97, -0.29). These clouds are
consistently bright under a range of model scenarios, including variation in
the diffusion coefficient and particle spectrum. On average, a detectable
gamma-ray flux is more likely for more massive clouds; systems with lower
separation distance between the SNR and cloud; and for slightly older SNRs.Comment: Accepted for publication in MNRAS. 30 pages, 16 figures, 7 table
Arc-minute-scale studies of the interstellar gas towards HESSJ1804216: Still an unidentified TeV -ray source
The Galactic TeV -ray source HESSJ1804216 is currently an
unidentified source. In an attempt to unveil its origin, we present here the
most detailed study of interstellar gas using data from the Mopra Southern
Galactic Plane CO Survey, 7 and 12mm wavelength Mopra surveys and Southern
Galactic Plane Survey of HI. Several components of atomic and molecular gas are
found to overlap HESSJ1804216 at various velocities along the line of
sight. The CS(1-0) emission clumps confirm the presence of dense gas. Both
correlation and anti-correlation between the gas and TeV -ray emission
have been identified in various gas tracers, enabling several origin scenarios
for the TeV -ray emission from HESSJ1804216. For a hadronic
scenario, SNRG8.70.1 and the progenitor SNR of PSRJ18032137
require cosmic ray (CR) enhancement factors of times the
solar neighbour CR flux value to produce the TeV -ray emission.
Assuming an isotropic diffusion model, CRs from both these SNRs require a slow
diffusion coefficient, as found for other TeV SNRs associated with adjacent ISM
gas. The morphology of gas located at 3.8kpc (the dispersion measure
distance to PSRJ18032137) tends to anti-correlate with features of the
TeV emission from HESSJ1804216, making the leptonic scenario possible.
Both pure hadronic and pure leptonic scenarios thus remain plausible.Comment: 29 pages, 23 figures, 5 tables, accepted for publication in PAS
Mirror Position Determination for the Alignment of Cherenkov Telescopes
Imaging Atmospheric Cherenkov Telescopes (IACTs) need imaging optics with
large apertures to map the faint Cherenkov light emitted in extensive air
showers onto their image sensors. Segmented reflectors fulfill these needs
using mass produced and light weight mirror facets. However, as the overall
image is the sum of the individual mirror facet images, alignment is important.
Here we present a method to determine the mirror facet positions on a segmented
reflector in a very direct way. Our method reconstructs the mirror facet
positions from photographs and a laser distance meter measurement which goes
from the center of the image sensor plane to the center of each mirror facet.
We use our method to both align the mirror facet positions and to feed the
measured positions into our IACT simulation. We demonstrate our implementation
on the 4 m First Geiger-mode Avalanche Cherenkov Telescope (FACT).Comment: 11 figures, small ray tracing performance simulation, and
implementation demonstratio
Data compression for the First G-APD Cherenkov Telescope
The First Geiger-mode Avalanche photodiode (G-APD) Cherenkov Telescope (FACT)
has been operating on the Canary island of La Palma since October 2011.
Operations were automated so that the system can be operated remotely. Manual
interaction is required only when the observation schedule is modified due to
weather conditions or in case of unexpected events such as a mechanical
failure. Automatic operations enabled high data taking efficiency, which
resulted in up to two terabytes of FITS files being recorded nightly and
transferred from La Palma to the FACT archive at ISDC in Switzerland. Since
long term storage of hundreds of terabytes of observations data is costly, data
compression is mandatory. This paper discusses the design choices that were
made to increase the compression ratio and speed of writing of the data with
respect to existing compression algorithms.
Following a more detailed motivation, the FACT compression algorithm along
with the associated I/O layer is discussed. Eventually, the performances of the
algorithm is compared to other approaches.Comment: 17 pages, accepted to Astronomy and Computing special issue on
astronomical file format
FACT - Monitoring Blazars at Very High Energies
The First G-APD Cherenkov Telescope (FACT) was built on the Canary Island of
La Palma in October 2011 as a proof of principle for silicon based photosensors
in Cherenkov Astronomy. The scientific goal of the project is to study the
variability of active galatic nuclei (AGN) at TeV energies. Observing a small
sample of TeV blazars whenever possible, an unbiased data sample is collected.
This allows to study the variability of the selected objects on timescales from
hours to years. Results from the first three years of monitoring will be
presented. To provide quick flare alerts to the community and trigger
multi-wavelength observations, a quick look analysis has been installed on-site
providing results publicly online within the same night. In summer 2014,
several flare alerts were issued. Results of the quick look analysis are
summarized.Comment: 2014 Fermi Symposium proceedings - eConf C14102.
Calibration and performance of the photon sensor response of FACT -- The First G-APD Cherenkov telescope
The First G-APD Cherenkov Telescope (FACT) is the first in-operation test of
the performance of silicon photo detectors in Cherenkov Astronomy. For more
than two years it is operated on La Palma, Canary Islands (Spain), for the
purpose of long-term monitoring of astrophysical sources. For this, the
performance of the photo detectors is crucial and therefore has been studied in
great detail. Special care has been taken for their temperature and voltage
dependence implementing a correction method to keep their properties stable.
Several measurements have been carried out to monitor the performance. The
measurements and their results are shown, demonstrating the stability of the
gain below the percent level. The resulting stability of the whole system is
discussed, nicely demonstrating that silicon photo detectors are perfectly
suited for the usage in Cherenkov telescopes, especially for long-term
monitoring purpose
FACT -- Operation of the First G-APD Cherenkov Telescope
Since more than two years, the First G-APD Cherenkov Telescope (FACT) is
operating successfully at the Canary Island of La Palma. Apart from its purpose
to serve as a monitoring facility for the brightest TeV blazars, it was built
as a major step to establish solid state photon counters as detectors in
Cherenkov astronomy.
The camera of the First G-APD Cherenkov Telesope comprises 1440 Geiger-mode
avalanche photo diodes (G-APD aka. MPPC or SiPM) for photon detection. Since
properties as the gain of G-APDs depend on temperature and the applied voltage,
a real-time feedback system has been developed and implemented. To correct for
the change introduced by temperature, several sensors have been placed close to
the photon detectors. Their read out is used to calculate a corresponding
voltage offset. In addition to temperature changes, changing current introduces
a voltage drop in the supporting resistor network. To correct changes in the
voltage drop introduced by varying photon flux from the night-sky background,
the current is measured and the voltage drop calculated. To check the stability
of the G-APD properties, dark count spectra with high statistics have been
taken under different environmental conditions and been evaluated.
The maximum data rate delivered by the camera is about 240 MB/s. The recorded
data, which can exceed 1 TB in a moonless night, is compressed in real-time
with a proprietary loss-less algorithm. The performance is better than gzip by
almost a factor of two in compression ratio and speed. In total, two to three
CPU cores are needed for data taking. In parallel, a quick-look analysis of the
recently recorded data is executed on a second machine. Its result is publicly
available within a few minutes after the data were taken.
[...]Comment: 19th IEEE Real-Time Conference, Nara, Japan (2014
FACT -- The G-APD revolution in Cherenkov astronomy
Since two years, the FACT telescope is operating on the Canary Island of La
Palma. Apart from its purpose to serve as a monitoring facility for the
brightest TeV blazars, it was built as a major step to establish solid state
photon counters as detectors in Cherenkov astronomy. The camera of the First
G-APD Cherenkov Telesope comprises 1440 Geiger-mode avalanche photo diodes
(G-APD), equipped with solid light guides to increase the effective light
collection area of each sensor. Since no sense-line is available, a special
challenge is to keep the applied voltage stable although the current drawn by
the G-APD depends on the flux of night-sky background photons significantly
varying with ambient light conditions. Methods have been developed to keep the
temperature and voltage dependent response of the G-APDs stable during
operation. As a cross-check, dark count spectra with high statistics have been
taken under different environmental conditions. In this presentation, the
project, the developed methods and the experience from two years of operation
of the first G-APD based camera in Cherenkov astronomy under changing
environmental conditions will be presented.Comment: Proceedings of the Nuclear Science Symposium and Medical Imaging
Conference (IEEE-NSS/MIC), 201
FACT - The First G-APD Cherenkov Telescope: Status and Results
The First G-APD Cherenkov telescope (FACT) is the first telescope using
silicon photon detectors (G-APD aka. SiPM). It is built on the mount of the
HEGRA CT3 telescope, still located at the Observatorio del Roque de los
Muchachos, and it is successfully in operation since Oct. 2011. The use of
Silicon devices promises a higher photon detection efficiency, more robustness
and higher precision than photo-multiplier tubes. The FACT collaboration is
investigating with which precision these devices can be operated on the
long-term. Currently, the telescope is successfully operated from remote and
robotic operation is under development. During the past months of operation,
the foreseen monitoring program of the brightest known TeV blazars has been
carried out, and first physics results have been obtained including a strong
flare of Mrk501. An instantaneous flare alert system is already in a testing
phase. This presentation will give an overview of the project and summarize its
goals, status and first results
Detection of very high energy gamma-ray emission from the gravitationally-lensed blazar QSO B0218+357 with the MAGIC telescopes
Context. QSO B0218+357 is a gravitationally lensed blazar located at a
redshift of 0.944. The gravitational lensing splits the emitted radiation into
two components, spatially indistinguishable by gamma-ray instruments, but
separated by a 10-12 day delay. In July 2014, QSO B0218+357 experienced a
violent flare observed by the Fermi-LAT and followed by the MAGIC telescopes.
Aims. The spectral energy distribution of QSO B0218+357 can give information on
the energetics of z ~ 1 very high energy gamma- ray sources. Moreover the
gamma-ray emission can also be used as a probe of the extragalactic background
light at z ~ 1. Methods. MAGIC performed observations of QSO B0218+357 during
the expected arrival time of the delayed component of the emission. The MAGIC
and Fermi-LAT observations were accompanied by quasi-simultaneous optical data
from the KVA telescope and X-ray observations by Swift-XRT. We construct a
multiwavelength spectral energy distribution of QSO B0218+357 and use it to
model the source. The GeV and sub-TeV data, obtained by Fermi-LAT and MAGIC,
are used to set constraints on the extragalactic background light. Results.
Very high energy gamma-ray emission was detected from the direction of QSO
B0218+357 by the MAGIC telescopes during the expected time of arrival of the
trailing component of the flare, making it the farthest very high energy
gamma-ray sources detected to date. The observed emission spans the energy
range from 65 to 175 GeV. The combined MAGIC and Fermi-LAT spectral energy
distribution of QSO B0218+357 is consistent with current extragalactic
background light models. The broad band emission can be modeled in the
framework of a two zone external Compton scenario, where the GeV emission comes
from an emission region in the jet, located outside the broad line region.Comment: 11 pages, 6 figures, accepted for publication in A&
- …