175 research outputs found
Whatâs in a name? â Diatom classification should reflect systematic relationships.
Large numbers of diatom taxa are currently being described each year and molecular data sets are providing phylogenetic evidence that challenges the traditional systematic arrangement of diatoms, but is such information being integrated into the classification? The traditional diatom classification originated as an aid to identification rather than as an arrangement expressing perceived relationships, and characters for identification continue to bias taxonomic descriptions. Reference to types for nomenclatural purposes has resulted in overly narrow taxon descriptions; i.e. types have been considered representative specimens (typical) of taxa, whereas they may not lie at the centre of the range of variation of a taxon. This paper discusses how taxonomic concepts are subject to change in the light of new data and that such changes should be reflected in the systematic arrangement. It presents some thoughts on character choice and the need to make appropriate comparisons before new taxa are erected. The importance of the suprageneric classification is also discussed
Recommended from our members
Comprehensive Survey of SNPs in the Affymetrix Exon Array Using the 1000 Genomes Dataset
Microarray gene expression data has been used in genome-wide association studies to allow researchers to study gene regulation as well as other complex phenotypes including disease risks and drug response. To reach scientifically sound conclusions from these studies, however, it is necessary to get reliable summarization of gene expression intensities. Among various factors that could affect expression profiling using a microarray platform, single nucleotide polymorphisms (SNPs) in target mRNA may lead to reduced signal intensity measurements and result in spurious results. The recently released 1000 Genomes Project dataset provides an opportunity to evaluate the distribution of both known and novel SNPs in the International HapMap Project lymphoblastoid cell lines (LCLs). We mapped the 1000 Genomes Project genotypic data to the Affymetrix GeneChip Human Exon 1.0ST array (exon array), which had been used in our previous studies and for which gene expression data had been made publicly available. We also evaluated the potential impact of these SNPs on the differentially spliced probesets we had identified previously. Though the 1000 Genomes Project data allowed a comprehensive survey of the SNPs in this particular array, the same approach can certainly be applied to other microarray platforms. Furthermore, we present a detailed catalogue of SNP-containing probesets (exon-level) and transcript clusters (gene-level), which can be considered in evaluating findings using the exon array as well as benefit the design of follow-up experiments and data re-analysis.</p
Recommended from our members
Trait-Associated SNPs Are More Likely to Be eQTLs: Annotation to Enhance Discovery from GWAS
Although genome-wide association studies (GWAS) of complex traits have yielded more reproducible associations than had been discovered using any other approach, the loci characterized to date do not account for much of the heritability to such traits and, in general, have not led to improved understanding of the biology underlying complex phenotypes. Using a web site we developed to serve results of expression quantitative trait locus (eQTL) studies in lymphoblastoid cell lines from HapMap samples (http://www.scandb.org), we show that single nucleotide polymorphisms (SNPs) associated with complex traits (from http://www.genome.gov/gwastudies/) are significantly more likely to be eQTLs than minor-allele-frequencyâmatched SNPs chosen from high-throughput GWAS platforms. These findings are robust across a range of thresholds for establishing eQTLs (p-values from 10â4â10â8), and a broad spectrum of human complex traits. Analyses of GWAS data from the Wellcome Trust studies confirm that annotating SNPs with a score reflecting the strength of the evidence that the SNP is an eQTL can improve the ability to discover true associations and clarify the nature of the mechanism driving the associations. Our results showing that trait-associated SNPs are more likely to be eQTLs and that application of this information can enhance discovery of trait-associated SNPs for complex phenotypes raise the possibility that we can utilize this information both to increase the heritability explained by identifiable genetic factors and to gain a better understanding of the biology underlying complex traits.</p
Recommended from our members
Mixed Effects Modeling of Proliferation Rates in Cell-Based Models: Consequence for Pharmacogenomics and Cancer
The International HapMap project has made publicly available extensive genotypic data on a number of lymphoblastoid cell lines (LCLs). Building on this resource, many research groups have generated a large amount of phenotypic data on these cell lines to facilitate genetic studies of disease risk or drug response. However, one problem that may reduce the usefulness of these resources is the biological noise inherent to cellular phenotypes. We developed a novel method, termed Mixed Effects Model Averaging (MEM), which pools data from multiple sources and generates an intrinsic cellular growth rate phenotype. This intrinsic growth rate was estimated for each of over 500 HapMap cell lines. We then examined the association of this intrinsic growth rate with gene expression levels and found that almost 30% (2,967 out of 10,748) of the genes tested were significant with FDR less than 10%. We probed further to demonstrate evidence of a genetic effect on intrinsic growth rate by determining a significant enrichment in growth-associated genes among genes targeted by top growth-associated SNPs (as eQTLs). The estimated intrinsic growth rate as well as the strength of the association with genetic variants and gene expression traits are made publicly available through a cell-based pharmacogenomics database, PACdb. This resource should enable researchers to explore the mediating effects of proliferation rate on other phenotypes.</p
Recommended from our members
ExprTarget: An Integrative Approach to Predicting Human MicroRNA Targets
Variation in gene expression has been observed in natural populations and associated with complex traits or phenotypes such as disease susceptibility and drug response. Gene expression itself is controlled by various genetic and non-genetic factors. The binding of a class of small RNA molecules, microRNAs (miRNAs), to mRNA transcript targets has recently been demonstrated to be an important mechanism of gene regulation. Because individual miRNAs may regulate the expression of multiple gene targets, a comprehensive and reliable catalogue of miRNA-regulated targets is critical to understanding gene regulatory networks. Though experimental approaches have been used to identify many miRNA targets, due to cost and efficiency, current miRNA target identification still relies largely on computational algorithms that aim to take advantage of different biochemical/thermodynamic properties of the sequences of miRNAs and their gene targets. A novel approach, ExprTarget, therefore, is proposed here to integrate some of the most frequently invoked methods (miRanda, PicTar, TargetScan) as well as the genome-wide HapMap miRNA and mRNA expression datasets generated in our laboratory. To our knowledge, this dataset constitutes the first miRNA expression profiling in the HapMap lymphoblastoid cell lines. We conducted diagnostic tests of the existing computational solutions using the experimentally supported targets in TarBase as gold standard. To gain insight into the biases that arise from such an analysis, we investigated the effect of the choice of gold standard on the evaluation of the various computational tools. We analyzed the performance of ExprTarget using both ROC curve analysis and cross-validation. We show that ExprTarget greatly improves miRNA target prediction relative to the individual prediction algorithms in terms of sensitivity and specificity. We also developed an online database, ExprTargetDB, of human miRNA targets predicted by our approach that integrates gene expression profiling into a broader framework involving important features of miRNA target site predictions.</p
Recommended from our members
Variants Affecting Exon Skipping Contribute to Complex Traits
DNA variants that affect alternative splicing and the relative quantities of different gene transcripts have been shown to be risk alleles for some Mendelian diseases. However, for complex traits characterized by a low odds ratio for any single contributing variant, very few studies have investigated the contribution of splicing variants. The overarching goal of this study is to discover and characterize the role that variants affecting alternative splicing may play in the genetic etiology of complex traits, which include a significant number of the common human diseases. Specifically, we hypothesize that single nucleotide polymorphisms (SNPs) in splicing regulatory elements can be characterized in silico to identify variants affecting splicing, and that these variants may contribute to the etiology of complex diseases as well as the inter-individual variability in the ratios of alternative transcripts. We leverage high-throughput expression profiling to 1) experimentally validate our in silico predictions of skipped exons and 2) characterize the molecular role of intronic genetic variations in alternative splicing events in the context of complex human traits and diseases. We propose that intronic SNPs play a role as genetic regulators within splicing regulatory elements and show that their associated exon skipping events can affect protein domains and structure. We find that SNPs we would predict to affect exon skipping are enriched among the set of SNPs reported to be associated with complex human traits.</p
Recommended from our members
Genome-Wide Local Ancestry Approach Identifies Genes and Variants Associated with Chemotherapeutic Susceptibility in African Americans
Chemotherapeutic agents are used in the treatment of many cancers, yet variable resistance and toxicities among individuals limit successful outcomes. Several studies have indicated outcome differences associated with ancestry among patients with various cancer types. Using both traditional SNP-based and newly developed gene-based genome-wide approaches, we investigated the genetics of chemotherapeutic susceptibility in lymphoblastoid cell lines derived from 83 African Americans, a population for which there is a disparity in the number of genome-wide studies performed. To account for population structure in this admixed population, we incorporated local ancestry information into our association model. We tested over 2 million SNPs and identified 325, 176, 240, and 190 SNPs that were suggestively associated with cytarabine-, 5â˛-deoxyfluorouridine (5â˛-DFUR)-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (pâ¤10â4). Importantly, some of these variants are found only in populations of African descent. We also show that cisplatin-susceptibility SNPs are enriched for carboplatin-susceptibility SNPs. Using a gene-based genome-wide association approach, we identified 26, 11, 20, and 41 suggestive candidate genes for association with cytarabine-, 5â˛-DFUR-, carboplatin-, and cisplatin-induced cytotoxicity, respectively (pâ¤10â3). Fourteen of these genes showed evidence of association with their respective chemotherapeutic phenotypes in the Yoruba from Ibadan, Nigeria (pTP53I11, COPS5 and GAS8, which are known to be involved in tumorigenesis. Although our results require further study, we have identified variants and genes associated with chemotherapeutic susceptibility in African Americans by using an approach that incorporates local ancestry information.</p
- âŚ