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Abstract

The International HapMap project has made publicly available extensive genotypic data on a number of lymphoblastoid cell
lines (LCLs). Building on this resource, many research groups have generated a large amount of phenotypic data on these
cell lines to facilitate genetic studies of disease risk or drug response. However, one problem that may reduce the usefulness
of these resources is the biological noise inherent to cellular phenotypes. We developed a novel method, termed Mixed
Effects Model Averaging (MEM), which pools data from multiple sources and generates an intrinsic cellular growth rate
phenotype. This intrinsic growth rate was estimated for each of over 500 HapMap cell lines. We then examined the
association of this intrinsic growth rate with gene expression levels and found that almost 30% (2,967 out of 10,748) of the
genes tested were significant with FDR less than 10%. We probed further to demonstrate evidence of a genetic effect on
intrinsic growth rate by determining a significant enrichment in growth-associated genes among genes targeted by top
growth-associated SNPs (as eQTLs). The estimated intrinsic growth rate as well as the strength of the association with
genetic variants and gene expression traits are made publicly available through a cell-based pharmacogenomics database,
PACdb. This resource should enable researchers to explore the mediating effects of proliferation rate on other phenotypes.
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Introduction

The International HapMap project [1,2] has made available a

vast amount of genetic variation data from a large number of

individuals with diverse ethnic background. A recent population

based whole-genome sequencing initiative (1000 Genomes Project

[3]) sought to expand on this effort by providing a more

comprehensive catalog of human genome sequence variation,

including rare variants in these samples. These data can be used to

study the effect of genetic variants on disease processes,

pharmacologic traits, and environmental responses. As part of

the HapMap project, EBV-transformed lymphoblastoid cell lines

(LCLs) derived from individuals of diverse ancestry were

established, which provide renewable sources of DNA and RNA.

The commercial availability of these cell lines and the rich genetic

information publicly available have enabled a large number of

researchers to adopt them as in vitro models for the study of

genotype-phenotype relationships in human cells [4]. Consistent

with this trend, a vast amount of phenotypic data such as gene

expression levels, drug response, and radiation response have been

made publicly available [5–8]. Furthermore, an enormous amount

of genotype-phenotype relationships have been generated [4,9–

11]. Our group has therefore constructed a database, PACdb [6],

a public central repository of pharmacology-related phenotypes, to

host these integrative results obtained in HapMap LCLs.

Although there are many advantages in utilizing the cell-based

system for genotype-phenotype studies, the problem of biological

and experimental noise when dealing with LCL-based pheno-

types and the potential for spurious results has been recognized

by several researchers [12,13]. Indeed, it has been proposed [14]

that non-genetic confounders and other technical factors in

generating phenotypes from these cell lines may hamper efforts

to evaluate the genetic contributions to phenotype. One

common factor, cellular growth rate, has undergone scrutiny

for its effect on various phenotypes, particularly drug-induced

cytotoxicity, a phenotype of interest in pharmacogenomic studies

[12,13]. For example, aberrant growth rate is one of the

distinctive features of cancer cells and growth inhibition

following exposure to chemotherapeutics and other cytotoxics

is intimately related to growth rate [13]. Thus, studying cellular

proliferation rate is likely to advance our understanding of

cancer pathogenesis. In this study, we set out to extract and

combine data from various sources and calculate intrinsic

cellular growth rate using a novel mixed effects model (MEM)

for over 500 HapMap cell lines.

Previous studies have shown the presence of a strong correlation

between gene expression traits and growth rate in other organisms

such as yeast and bacteria [15–17]. Brauer et al. [15] measured

gene expression traits in yeast under several controlled growth
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conditions and reported that 25% of the gene expression

phenotypes were correlated with growth rate. In addition, genes

important for cellular proliferation have been found to be

differentially expressed in most cancer tissues [18–20]. Such genes

were shown to be strong prognostic factors in breast cancer [21–

23], renal cancer [21], lung cancer [21], mantle cell lymphoma

patients [24]. Thus, to gain insights into the factors contributing to

intrinsic growth rate phenotype, we also evaluated the relationship

between gene expression and cellular growth.

Results

Our laboratory has assayed over 500 HapMap LCLs for drug-

induced cellular sensitivity phenotypes for a wide spectrum of

chemotherapeutic agents and investigated the genetic variants and

genes that affect drug response [25,26]. This set comprises the 180

Utah residents of Western European ancestry (CEU), 180 African

from Ibaban, Nigeria (YRI), 90 Asian (ASN, composed of 45 Han

Chinese from Beijing and 45 Janapase from Tokyo), and 90

African American from the Southwestern US (ASW) cell lines. For

more than 10 chemotherapeutic drugs, cellular growth inhibition

after exposure to a range of concentrations of the drug was

measured using the alamarBlue assay as described previously [12].

For every single drug sensitivity experiment, the cellular growth

rate without drug was also determined, which provided us with a

large number of replicated measures of cellular growth rate under

a wide range of biological conditions (e.g., freeze and thaw,

passage of cells, personnel performing experiments). For example

for 90 of CEU phase I and II and 90 of YRI phase I and II LCLs,

we had 10 different measurements performed over the course of

several years (2006–2011).

Intrinsic growth rate
We have computed the intrinsic growth rate of these cell lines

using MEM (described in Materials and Methods section) and

provide the values in Table S1. Figure 1 shows these values in

comparison with the raw data. The rightmost boxplot in each

panel (label 12) represents the intrinsic growth rate. The other

boxplots correspond to the raw data. It is clear that the variability

of the raw data is in general much larger than the intrinsic growth.

Unless otherwise stated, all subsequent analyses are done on the

intrinsic growth rate.

Population and gender differences exist in LCL intrinsic
growth rate

The mean and standard deviation of the intrinsic growth by

population is shown in Table 1. The effect of population on

growth rate was significant (likelihood ratio test P~0:006) with

ASW growing the fastest, followed by YRI and ASN, and CEU

being the slowest. In pairwise comparison, only CEU’s growth was

significantly (Pv0:0015) lower than ASW’s. Similar results had

been reported for YRI, ASN and CEU by Stark et al. [13] but the

wide range of experimental conditions used in the current study

strengthens the evidence. Figure 2 shows boxplots of intrinsic

growth rate by population. Since we have reduced the effect of

confounders by combining data from multiple experiments, the

differences we find are likely to be intrinsic to the cell lines.

However, the generalizability of these results to in vivo population

differences is not obvious. One factor that may explain the slow

growth of CEU cell lines is the time from the establishment of

these lines and merits further study.

The mean and standard deviation of the intrinsic growth rate by

gender are also shown in Table 1. Figure 3 shows the boxplot of

the latter by gender and population. The effect of gender on

growth rate was found to be significant. Across all experiments,

female cell lines grew approximately 7% (95% CI) slower than

male cell lines. This finding remained quite consistent across

individual experiments. Gender differences are not likely to be due

to experimental differences since both female and male cell lines

are handled similarly. Differential effect of estrogen and other

hormones in media could explain part of this difference.

Comparison with other publicly available LCL growth
rate dataset

Choy et al. [14] measured growth rate on some of the same cell

lines and made the data publicly available (CEU I/II, YRI I/II,

and ASN). They performed cell counting for five consecutive days

and estimated growth rate as the slope of the fitted line (log

concentration vs. time). This growth rate is based on only one

biological replicate (although they did measure an additional

biological replicate at one time point for a subset of cell lines for

internal validation). We compared our estimated intrinsic growth

rate with the growth rate measured by Choy et al. [14]. The

correlation between Choy’s growth rate and ours was 0.30, which

supports the idea that both our intrinsic growth and Choy’s

growth are realizations of the true intrinsic growth rate albeit with

different degree of noise. We analyzed Choy’s data and found

comparable magnitude of the effect of gender (slightly less than

4%; p = 0.07) and cell lines from CEU population grew at the

slowest pace in both datasets.

Cellular growth rate is important for gene expression
Baseline gene expression data for CEU and YRI phase I and II

described in Zhang et al. [27] were used to examine the

association with the intrinsic growth rate. We found that almost

3000 out of the 10748 genes examined were associated with the

intrinsic growth rate at FDRv0.10; the result held regardless of

whether we adjusted for expression heterogeneity or not [28]. The

list of genes whose expression level associated with intrinsic growth

rate in CEU and YRI LCLs is provided in Table S2. Figure 4

shows the QQ-plot of p-values from the association between gene

expression phenotypes and intrinsic growth rate adjusted by

gender and population. The upper left panel shows the QQ-plot

for the unadjusted analysis and the upper right panel shows the

plot for the Surrogate Variable Analysis (SVA; expression

heterogeneity) adjusted analysis. The lower panels show the

Author Summary

Cell-based models provide a convenient system to
conduct studies that would be impossible to apply to
human subjects, but the phenotypes measured on these
models can be marred with biological noise. We propose a
method (MEM) to address this issue by statistically
combining data from various sources, and we apply it to
the proliferation rates of cell lines collected as part of the
International HapMap project. We show that the prolifer-
ation rate computed using our method is a better measure
of the true proliferation rate of the cells and produces a
much stronger association with gene expression pheno-
types on the same cell lines: more than 30% of the genes
tested were significantly associated with proliferation rate.
We also demonstrate that genetic variants have an effect
on growth rate. Finally, we make these intrinsic prolifer-
ation rates and the strength of the association with gene
expression phenotypes public, which should allow other
researchers to explore the mediating effects of prolifera-
tion on other phenotypes.

MEM of Proliferation Rates in Cell-Based Models
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corresponding histograms with p-values highly concentrated near

the zero. The gray dots in each of the QQ-plots correspond to p-

values under the null hypothesis of no association, which was

computed by randomly permuting the phenotype. Actual p-values

lie well above the null hypothesis p-values, which indicate that the

significance found is not due to model misspecification or

correlation between gene expression phenotypes. Stark et al.

[13] had not been able to find significant association (FDRv0.10)

between gene expression and growth rate in the first phase CEU

population because of the noisier version of growth rate and

smaller sample size used at the time. The strong correlation

between gene expression traits and cellular growth rate is

consistent with similar findings in yeast [15] and in bacteria

[16,17].

A clear advantage of using our method is shown by the fact that

our power to detect association between gene expression

phenotype and growth rate is substantially increased. This is

illustrated in Figure 5, which compares the p-values from the

association between gene expression phenotype and growth rate

when the intrinsic value computed with MEM is used vs. when the

individual experiment’s values are used. The left panel shows the

p-values from the SVA (expression heterogeneity) adjusted analysis

and the right panel shows the results from the unadjusted analysis.

All points lie below the one-to-one line, which means that the

intrinsic growth rate achieves greater power in identifying

association than any of the individual experiment’s data. The

red dots correspond to growth rate data from Choy et al. [14].

Functional significance of growth-rate associated genes
Functional enrichment analysis was performed using DAVID

Bioinformatics Resources [29,30]. Table 2 shows the GO terms

that were enriched in our intrinsic growth rate-associated gene set.

They clustered into cell cycle, cell death, intracellular transport,

protein transport and phosphorylation. For comparison, we

checked the proportion of cell cycle, mitosis, cell death and

phosphorylation genes among metabolic process genes (from GO)

and immune response genes (from GO). The proportion of

growth-associated genes annotated to these terms were 6.8%,

2.7%, 6.1%, and 6.2%, respectively. In comparison, among

immune response genes 0.2%, 0.16%, 1.1%, and 0% were

annotated to these terms. For metabolic process genes none of

these terms reached significance at the loose threshold of pv0:10.

Table 3 shows the SP-PIR keywords enriched in our growth

gene set; more than half of the growth-associated genes were

associated with phosphoprotein (p~2|10{67) and 22% of them

were associated with acetylation (p~3|10{43). For comparison,

we checked the proportion of genes related to phosphoprotein

keyword for two other cellular functions: metabolism (metabolic

process from GO) and immune response. None of these genes

were annotated with the phosphoprotein keyword in the SP-PIR

database.

Table S3 shows the Kegg pathways enriched in our set.

Cell proliferation signatures
We compared the growth-associated genes with two recently

published proliferation signatures. The first one was obtained by

performing a meta-analysis of over 2833 breast tumor expression

profiles by Wirapati et al. [31]. The second one was compiled by

Starmans et al. [21] based on cell cycle in cervix cancer cell lines

[32] and human fibroblasts [33]. We found that 44% of Wirapati’s

proliferation genes belonged [31] to our growth-associated gene

list (defined as Pv0:10) and 75% of them had a positive effect on

growth (higher expression associated with faster growth). This

enrichment is not likely to occur by chance as can be seen in

Figure 6. The figure shows a histogram of the number of growth-

associated genes we would get if we randomly sampled the set of

all genes we considered. The vertical line indicates the actual

number of growth-associated genes in Wirapati’s list. We

performed the same analysis with Starmans et al. [21] proliferation

signature but did not find any significant enrichment. Neverthe-

less, 80% of the Starmans’ proliferation genes had a positive effect

on LCL growth rate.

Enrichment of growth-associated gene eQTLs among top
growth-associated SNPs

We performed a genome wide association study (GWAS) of the

intrinsic growth rate for CEU and YRI unrelated cell lines. Even

though we were unable to find genome-wide significant SNPs, we

did find that the top intrinsic growth-associated SNPs were more

likely to target (as eQTLs) intrinsic growth-associated genes. We

Figure 1. Growth rate measurements by HapMap panel and
experiment. We illustrate the intrinsic growth rate computed with
MEM in comparison with the raw data. The rightmost boxplot in each
panel (label 12) represents the intrinsic growth rate. The other boxplots
correspond to the raw data. The variability of the raw data is in general
much larger than that of the intrinsic growth.
doi:10.1371/journal.pgen.1002525.g001

MEM of Proliferation Rates in Cell-Based Models
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have quantified the enrichment using three different procedures

described in the Methods section. The first one uses the

hypergeometric distribution to test the enrichment of growth

associated genes among targets of growth associated SNPs. The

Fisher’s test p-value was 10{17. The second method accounts for

the correlation between genes and yielded an empirical pv0:001
(none of the 1000 simulations yielded Fisher’s test p-value smaller

than the observed 10{17). The third method accounts for the fact

that the data from the same individuals are used when computing

the intrinsic growth-gene association as well as the intrinsic

growth-SNP association. The empirical p-value with this method

was 0.026.

Growth-associated gene eQTLs
Since eQTLs have been shown to be more likely to be associated

with complex phenotypes [34–37], we focused the analysis on

growth-associated gene eQTLs but the enrichment was not strong

enough to render significant SNPs after adjusting for multiple

testing. Interestingly however, among the growth-gene eQTLs we

found two well-replicated colorectal cancer SNPs: rs4779584

[38,39] and rs3802842 [39,40]. A target gene of rs4779584 is a

growth-associated gene NEU1 [MIM:608272] (growth gene

expression association q{value~0:024), which has been reported

to contribute to the suppression of metastasis of human colon cancer

[41]. A target gene of rs3802842, MED13 [MIM: 603808] (growth

gene association q-value = 0.052), is part of the CDK8 subcomplex

[42] and CDK8 is a colorectal oncogene that regulates beta catenin

activity [43]. To our knowledge, the potential functional connection

between these two established colorectal cancer SNPs and the

growth-associated genes NEU1 and MED13 has not been made

previously. The association between these SNPs and intrinsic

growth rate however was not significant.

Effect of EBV copy number on intrinsic growth accounted
by SVA

As an attempt to address the concern of whether these

associations may be confounded by EBV transformation, we

cross-checked the growth-associated genes with the list of EBV

transformation-associated genes reported by Caliskan et al. [44]

and found no evidence of enrichment of EBV genes among our

growth genes. Furthermore, we analyzed the effect of EBV copy

numbers on intrinsic growth. For this purpose, we used

measurements of EBV copy numbers on a large portion of cells

used for the association with gene expression (86 CEU, 74 YRI)

Table 1. Average intrinsic growth rate by population and
gender.

Population mean sd

ASW 79302 11776

ASN 76484 11275

CEU 71724 13552

YRI 76970 14188

Gender mean sd

Male 77578 13425

Female 73520 13086

This table shows the mean and standard deviations of the intrinsic growth rate
computed using MEM by population and gender.
doi:10.1371/journal.pgen.1002525.t001

Figure 2. Intrinsic growth rate by population. This plot shows the intrinsic growth rate as a function of population. The fastest growing
population was ASW, followed by YRI and ASN with roughly similar growth rate, and lastly CEU.
doi:10.1371/journal.pgen.1002525.g002

MEM of Proliferation Rates in Cell-Based Models
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from Choy et al. [14]. We found a small but significant effect

(R2~0:02) of EBV on intrinsic growth. However, once we

accounted for SVA variables (expression heterogeneity), the effect

was no longer significant. Similar results were found using EBV

data generated in our lab for a subset of the samples. This result

suggests that the intrinsic growth-gene expression associations we

found (SVA adjusted) are not mediated by EBV copy numbers,

consistent with the lack of enrichment in EBV-related genes

among our top growth genes.

Discussion

In this study, we propose a novel method, MEM, that combines

data from multiple sources using a mixed effects model and

estimates an intrinsic phenotype that is more reflective of the true

phenotype than each of the individual experiment’s data. We

apply it to generate intrinsic cellular growth rate, which is a

phenotype with important implications for disease biology and

phamacogenomics. Using MEM we computed the intrinsic growth

rate of over 500 HapMap cell lines and studied their properties.

To our knowledge, this is the most comprehensive analysis to date

of intrinsic cellular growth rate for the HapMap cell lines, for

which various biological conditions were included in the

estimation. We understand that estimates of intrinsic growth can

be further improved as more experiments are included. A

Bayesian approach would fit well for this purpose. Existing data

would make up the prior distribution for the intrinsic growth rates

and the addition of new data would generate posterior

distributions, presumably more concentrated on the true intrinsic

growth rates. We plan to regularly update the HapMap LCL

intrinsic growth rate phenotype data and make them widely

available to the research community through PACdb [6].

We found significant in vitro population differences in cellular

growth rate in the HapMap populations included in our study.

The ASW lines (African American) proliferated at the fastest rate

followed by YRI and ASN (Asian), and CEU were the slowest. We

analyzed Choy et al.’s [14] growth rate data and also found CEU

lines to grow slower than other populations. Since we combined

data from multiple sources and reduced the level of noise, the

observed population differences are likely to be intrinsic to the cell

lines and may in part be due to genetic factors; however, the

methods used in establishing the LCLs and the experimental

conditions during the EBV-transformation could also contribute to

this observation. The fact that CEU cell lines were established

much earlier than other populations could in part explain their

slow growth. Of the populations included in the HapMap Project,

only the CEU LCLs existed as previously established cell lines.

The other populations were collected and established as cell lines

specifically for the HapMap Project over the years 2002 through

2007 [12,13]. Nonetheless, the observed population difference in

intrinsic cellular growth rate needs to be considered when studying

population differences in complex traits using these cell lines.

Interestingly, we found that female cell lines grow at roughly 7%

slower pace than male cell lines consistently across different

experiments. We found similar gender effect when we analyzed

Choy et al.’s data [14]. Gender differences are not likely to be due

to experimental differences since both female and male cell lines

are handled similarly. Differential effect of estrogen and other

hormones in media could explain part of this difference.

It is not clear whether these observed population and gender

differences are extensible beyond these cell lines. However, these

initial observations warrant further studies.

We found that almost 3000 gene expression phenotypes were

associated with the intrinsic growth rate, which is consistent with

Figure 3. Slower growth for female cell lines. This plot shows the slower growth of female cell lines across different populations.
doi:10.1371/journal.pgen.1002525.g003

MEM of Proliferation Rates in Cell-Based Models
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findings in yeast [15]. This finding held robustly, whether or not

we accounted for expression heterogeneity using Surrogate

Variable Analysis [28]. Our top growth-related genes were

enriched in cell cycle, mitosis, cell death, and phosphorylation

terms. We also found a significant overlap between our intrinsic

growth genes and a proliferation signature inferred from breast

tumor microarray data [31]. Thus, our study provides a

comprehensive list - combining both germline and tumor cells -

of potential biomarkers and therapeutic targets for proliferation-

mediated phenotypes. Furthermore, the gene expression traits

associated with intrinsic growth determined by our study are much

more significant than their corresponding associations with growth

rate data generated from any individual experiment, including

Choy et al.’s [14] growth rate. This strongly suggests that our

method to combine data from several experiments is succeeding at

yielding a more intrinsic measure of growth rate.

Figure 4. Intrinsic growth versus gene expression with Surrogate Variable Analysis adjustment. a. QQ-plot of the association p-values
between gene expression and intrinsic growth adjusted by gender and population. b. QQ-plot of the association p-values between gene expression
and intrinsic growth adjusted by gender, population, and expression heterogeneity. Points above the red, orange, and yellow lines have FDR less
than 0.05, 0.10, and 0.25 under the assumption of no correlation between gene expressions. Gray line is the one to one line. Gray dots correspond to
200 associations estimated after permuting the growth rate so the null hypothesis of no association would hold. It is clear that the high significance
of p-values is not due to model misspecification nor correlations between gene expression levels. c. Histogram of association p-values from a. d.
Histogram of association p-values from b.
doi:10.1371/journal.pgen.1002525.g004

MEM of Proliferation Rates in Cell-Based Models
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Despite the limited power given the relatively small sample size

used for eQTL mapping, we demonstrate evidence of genetic

effect on intrinsic growth rate by determining the enrichment of

growth-associated genes among genes targeted by top growth-

associated SNPs (as eQTLs) after accounting for LD structure and

correlation between gene expressions. Interestingly, among intrinsic

growth gene eQTLs, we found two well replicated colorectal cancer

SNPs (rs4779584 [38,39] and rs3802842 [39,40]), which target

growth-associated genes NEU1 and MED13; both genes have been

implicated in colorectal cancer [41–43].

We deposited our findings into PACdb [6], which should be a

useful addition to the already rich set of phenotype data currently

available for the HapMap cell lines. In addition to the intrinsic

growth rates (Table S1), the significance of the association with gene

expression phenotypes (Table S2) is available from the same

database. This resource should be useful to explore any mediation

effect of growth rate on the phenotype of interest either by using the

intrinsic growth rate as a covariate in the analysis or by looking at

overlap between the phenotype of interest and the top growth

related genes. We also make the R code to apply MEM and

generate intrinsic growth available on PACdb (http://pacdb.org/

growthrate/generate-igrowth.r and http://pacdb.org/growthrate/

rawgrowth.txt)

Materials and Methods

Mixed Effects Model averaging MEM
MEM pools phenotype data from multiple sources and computes

an intrinsic value of the phenotype for each individual after

accounting for different experimental conditions and covariates.

y(i,j,k)~aziY (i)zexperimental conditions(j)z

b1X1z:::zbpXpze(i,j,k)

where the index i identifies the individual or cell line, iY (i)
represents the intrinsic phenotype of the individual, experimental

conditions can represent a large range of different experimental

conditions (for example different sites, technicians, method, passage

number, etc.), X ’s are relevant covariates, and e(i,j,k) is an error

term. The index k represents different replications of the data for

given individual and experimental condition. The intrinsic

phenotype iY and experimental conditions are treated as random

effects and covariates X ’s are treated as fixed effects. Extension to

generalized linear model is straightforward.

Hapmap cell lines and intrinsic growth
HapMap cell lines were purchased from the non-profit Coriell

Institute for Medical Research (http://www.coriell.org/) and

growth rates were measured using alamarBlue assay as described

in Stark et al. [12].

The alamarBlue assay gives a measure of the number of

proliferating cells Nt at time t:

Nt~f (alamar number)

where f is some increasing function. Thus growth rate can in

principle be computed as

log(Nt=No)=t~log(f (alamar number)=No)=t,

which is also some function of the alamar number. With a slight

abuse of notation, we will refer to this alamar number as the

growth rate. It should be noted that the approach we describe here

holds generally regardless of the assay used to measure the number

of proliferating cells.

We use MEM to compute an intrinsic growth rate for each cell

with the following model:

Figure 5. Comparison of significance between intrinsic growth and individual experiment’s growth. The plot shows the QQ-plot
comparing the p-values from the association between gene expression phenotype and growth rate when the intrinsic value computed with MEM is
used vs. when the individual experiment’s values are used. The left panel shows the p-values from the SVA-adjusted analysis and the right panel
shows the results from the unadjusted analysis. All points are below the one to one line, which means that the intrinsic growth rate achieves greater
power in identifying association than any of the individual experiment’s data. The red line corresponds to growth rate data from Choy et al. [14].
doi:10.1371/journal.pgen.1002525.g005

MEM of Proliferation Rates in Cell-Based Models
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Growth(i,j,k)~azsex(i)zpop(i)z

experimental conditions(j)ziGrowth0(i)ze(i,j,k)

where the index i identifies the cell line, pop is the population to

which the cell line belongs to (CEU,YRI, ASW, or ASN),

iGrowth0(i) represents the intrinsic growth rate of the cell line,

experimental conditions can represent a large range of different

experimental conditions, and e(i,j,k) is an error term. The index k
represents different replications of the data for given individual

and experimental condition. We set the gender and population as

fixed effects and experimental conditions and iGrowth0 as random

effects.

The term iGrowth0 is a cell line specific intercept (so it is

different for each cell line) and can be interpreted as (some

monotone function of) the intrinsic growth rate of each individual.

This term is (by construction) orthogonal to gender and

population. In general, it may make more sense to include the

population and gender effect in the intrinsic growth rate so we

define iGrowth as the sum of the iGrowth0 and the estimated

effects of population and gender.

iGrowth~iGrowth0zfitted effect for populationz

fitted effect for gender

The term ‘‘experimental conditions’’ could be allowed to be more

than one-dimensional. For our dataset it was sufficient to use

‘‘technician’’ as the experimental condition. The reason for this

choice was that each technician’s work was for the most part

concentrated at roughly the same time (within 6 months) so the

experimental conditions such as thaw history are likely to be

reasonably homogeneous. Our results were robust to using other

combinations of experimental conditions such as a combination of

technician, drug and population. We found no need to account for

the trio structure since the correlation coefficient between parent

and child was not significantly different from zero. This fact should

Table 2. GO enrichment analysis of growth-associated genes.

Term Count % PValue Bonferroni

GO:0007049 cell cycle 190 6.80 3.09E-11 1.35E-07

GO:0007067 mitosis 74 2.65 4.79E-11 2.08E-07

GO:0000280 nuclear division 74 2.65 4.79E-11 2.08E-07

GO:0048285 organelle fission 76 2.72 5.26E-11 2.29E-07

GO:0000087 M phase of mitotic cell cycle 74 2.65 1.23E-10 5.35E-07

GO:0000278 mitotic cell cycle 105 3.76 3.25E-10 1.42E-06

GO:0033554 cellular response to stress 144 5.15 6.78E-10 2.95E-06

GO:0022402 cell cycle process 142 5.08 2.13E-09 9.28E-06

GO:0016265 death 170 6.08 1.08E-08 4.68E-05

GO:0008219 cell death 169 6.05 1.10E-08 4.80E-05

GO:0046907 intracellular transport 157 5.62 1.22E-08 5.32E-05

GO:0012501 programmed cell death 145 5.19 7.46E-08 3.24E-04

GO:0051301 cell division 81 2.90 1.93E-07 8.37E-04

GO:0022403 cell cycle phase 105 3.76 2.06E-07 8.97E-04

GO:0006796 phosphate metabolic process 210 7.51 2.15E-07 9.35E-04

GO:0006793 phosphorus metabolic process 210 7.51 2.15E-07 9.35E-04

GO:0006915 apoptosis 141 5.04 2.62E-07 1.14E-03

GO:0000279 M phase 87 3.11 3.87E-07 1.68E-03

GO:0009057 macromolecule catabolic process 172 6.15 8.49E-07 3.68E-03

GO:0043067 regulation of programmed cell death 177 6.33 1.16E-06 5.04E-03

GO:0010941 regulation of cell death 177 6.33 1.48E-06 6.41E-03

GO:0015031 protein transport 167 5.97 1.72E-06 7.43E-03

GO:0045184 establishment of protein localization 168 6.01 1.97E-06 8.54E-03

GO:0006974 response to DNA damage stimulus 93 3.33 2.39E-06 1.03E-02

GO:0016310 phosphorylation 173 6.19 2.64E-06 1.14E-02

GO:0044265 cellular macromolecule catabolic process 159 5.69 3.00E-06 1.30E-02

GO:0007346 regulation of mitotic cell cycle 47 1.68 3.31E-06 1.43E-02

GO:0042981 regulation of apoptosis 173 6.19 3.56E-06 1.54E-02

GO:0030163 protein catabolic process 137 4.90 1.28E-05 5.43E-02

GO:0007088 regulation of mitosis 23 0.82 1.46E-05 6.15E-02

This table shows the top GO terms that were enriched in our growth-associated gene set. They clustered into cell cycle, cell death, intracellular transport, protein
transport and phosphorylation. It was obtained using the DAVID Bioinformatic Resources.
doi:10.1371/journal.pgen.1002525.t002
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not be interpreted as lack of heritability but that the level of noise

was too high to be able to estimate the correlation with the given

sample size.

Growth rate itself was quite normally distributed. The additivity

assumption of the model may be better achieved in the log scale

but we did not notice much difference in the overall results when

we tried different transformations so we used the untransformed

variable. We fit the mixed effects model using the lme4 [45]

package for the R Statistical Software [46]. P-values for the fixed

effects were calculated using likelihood ratio tests after fitting the

models with maximum likelihood option (REML = FALSE).

Gene expression data was generated by our lab for phase I/II

CEU and YRI cell lines using Affymetrix GeneChip Human Exon

1.0 ST array as described by Zhang et al. [27]. Association

between gene expression and growth rate was calculated using a

linear model with log-transformed gene expression data as

response and intrinsic growth, population and gender as

covariates.

log2 (gene expression)~azb � iGrowth0zc � popzd � sex

Surrogate Variable adjustment was done using the SVA package

[28,47]. FDR was computed using Storey’s qvalue pack-

age[48,49]. Figures were generated using the graphic capabilities

of R and the ggplot2 package [50] in R. Functional term

enrichment was assessed using DAVID [29,30]. Genes associated

with intrinsic growth at FDRv10% were used as significant genes

and the default Homo Sapiens list was used as background.

Genome wide association between genotype and intrinsic

growth was performed using the PLINK v1.97 software [51]

(http://pngu.mgh.harvard.edu/purcell/plink/). CEU (I/II and II)

Table 3. SP-PIR keyword enrichment of growth-associated
genes.

Term Count % PValue Bonferroni Benjamini

phosphoprotein 1465 52.42 3.25E-70 2.31E-67 2.31E-67

acetylation 630 22.54 9.54E-46 6.78E-43 3.39E-43

nucleus 823 29.45 4.49E-24 3.19E-21 1.06E-21

cytoplasm 653 23.36 1.43E-20 1.02E-17 2.54E-18

atp-binding 303 10.84 4.29E-18 3.05E-15 6.10E-16

nucleotide-binding 356 12.74 3.00E-15 2.13E-12 3.55E-13

transferase 304 10.88 6.20E-15 4.42E-12 6.31E-13

alternative splicing 1255 44.90 2.82E-14 2.00E-11 2.51E-12

cell cycle 127 4.54 1.49E-13 1.06E-10 1.18E-11

kinase 168 6.01 1.35E-12 9.62E-10 9.62E-11

host-virus interaction 87 3.11 4.10E-12 2.91E-09 2.65E-10

endoplasmic reticulum 167 5.97 5.71E-11 4.06E-08 3.38E-09

ubl conjugation 140 5.01 7.40E-10 5.26E-07 4.05E-08

mitosis 59 2.11 1.63E-09 1.16E-06 8.29E-08

cell division 76 2.72 2.00E-09 1.42E-06 9.48E-08

ligase 84 3.01 2.68E-09 1.91E-06 1.19E-07

golgi apparatus 135 4.83 1.70E-08 1.21E-05 7.12E-07

Apoptosis 94 3.36 9.98E-08 7.09E-05 3.94E-06

ATP 63 2.25 9.92E-07 7.05E-04 3.71E-05

ubl conjugation pathway 113 4.04 1.57E-06 1.12E-03 5.59E-05

phosphotransferase 55 1.97 2.33E-06 1.66E-03 7.89E-05

lysosome 44 1.57 3.35E-06 2.38E-03 1.08E-04

serine/threonine-protein
kinase

88 3.15 4.86E-06 3.45E-03 1.50E-04

Aminoacyl-tRNA
synthetase

18 0.64 9.49E-06 6.72E-03 2.81E-04

protein transport 104 3.72 1.99E-05 1.41E-02 5.67E-04

activator 109 3.90 3.42E-05 2.40E-02 9.34E-04

mitochondrion 161 5.76 4.49E-05 3.14E-02 1.18E-03

helicase 38 1.36 4.54E-05 3.18E-02 1.15E-03

rna-binding 111 3.97 6.66E-05 4.62E-02 1.63E-03

wd repeat 64 2.29 9.59E-05 6.59E-02 2.27E-03

transit peptide 99 3.54 1.09E-04 7.47E-02 2.50E-03

phospholipid biosynthesis 17 0.61 1.25E-04 8.48E-02 2.76E-03

Chromosome partition 14 0.50 1.72E-04 1.15E-01 3.71E-03

transcription factor 22 0.79 1.88E-04 1.25E-01 3.92E-03

hydrolase 272 9.73 2.19E-04 1.44E-01 4.45E-03

cytoskeleton 124 4.44 2.63E-04 1.70E-01 5.18E-03

isopeptide bond 69 2.47 4.33E-04 2.65E-01 8.29E-03

endosome 49 1.75 5.30E-04 3.14E-01 9.87E-03

This table shows the top SP-PIR keywords enriched in our growth-associated
gene set. More than half of the growth-associated genes were associated with
phosphoprotein (P~2|10{67) and 22% of them were associated with
acetylation (P~3|10{43). It was obtained using the DAVID Bioinformatic
Resources.
doi:10.1371/journal.pgen.1002525.t003

Figure 6. Growth gene overlap with Wirapati et al’s prolifer-
ation signature. Histogram of the number of growth genes (as
defined by Pv0:10) when a random set of 235 genes were sampled out
of 10748 genes. The maximum number of growth genes was 101 after
10000 simulations. The black circle indicates the 104 growth genes
found in Wirapati’s proliferation signature [31].
doi:10.1371/journal.pgen.1002525.g006
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and YRI (I/II and III) unrelated cell lines were used with draft

release 2 consensus genotype (which passed QC across all 11

populations from HapMap 3 samples) downloaded from the

HapMap Project website.

Enrichment of growth associated genes among targets
of growth associated SNPs

We use three methods to assess the enrichment of growth

associated genes among targets of growth associated SNPs.

First we use the hypergeometric distribution and tests (Fisher’s

test) whether the overlap is more significant than one would get

with a random set of genes. This method computes the exact p-

value but assumes independence between genes.

The second method accounts for the correlation structure

between target genes by simulation, which will induce a

correlation structure between simulated genes similar to the

observed one. For this purpose, we permute the phenotype 1000

times and for each permutation we perform GWAS, select the top

SNPs (pv10{4), query the target genes for the top SNPs

(pv10{4) using SCANdb, and calculate the Fisher’s test p-value

for the overlap between growth genes and target genes. Finally, we

compute an empirical p-value for the enrichment as the

proportion of times the simulated Fisher’s p-value was smaller

than the observed Fisher’s p-value.

The third method accounts for the fact that the data from the

same individuals are used when computing the intrinsic growth-

gene association as well as the intrinsic growth-SNP association.

The simulated target genes are generated as described in the

second method. The intrinsic growth associated genes are

generated using the same permuted phenotype used to generate

the target genes (FDRv0:10). The association p-value is

computed by regressing the simulated intrinsic growth on gene

expressions (without expression heterogeneity adjustment,

pv0:05). For each simulation, the Fisher’s p-value is computed

for the overlap between simulated target genes and simulated

intrinsic growth associated genes. Finally, we compute an

empirical p-value for the enrichment as the proportion of times

the simulated p-value was smaller than the observed p-value.

Supporting Information

Table S1 Intrinsic Growth. This file lists the full list of intrinsic

growth rate computed using MEM.

(CSV)

Table S2 Growth-associated genes. This file lists the p-values

and effect sizes of the association between intrinsic growth rate and

gene levels. Both the SVA-adjusted and unadjusted p-values are

included.

(TXT)

Table S3 KEGG pathways enriched in growth-associated gene

set. This table shows the top KEGG pathways enriched in our

growth-associated gene set. It was obtained using the DAVID

Bioinformatic Resources.

(PDF)
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