11 research outputs found

    Exercise capacity of vegan, lacto-ovo-vegetarian and omnivorous recreational runners

    Get PDF
    Background In search of the right nutrition for the athlete, numerous nutritional strategies and diets were discussed over time. However, the influence of plant-based diets, especially veganism, on exercise capacity has not been clarified. Methods We conducted a cross-sectional study to compare the exercise capacity of vegan (VEG, n = 24), lacto-ovo-vegetarian (LOV, n = 26) and omnivorous (OMN, n = 26) recreational runners. To determine maximal exercise capacity, participants performed an incremental exercise test on a bicycle ergometer until voluntary exhaustion. During the test capillary blood samples were taken at several time points for the measurement of arterial lactate [lac] and glucose [glc] concentrations. To determine nutrient intake, a 24 h dietary recall was conducted. Results The groups showed comparable training habits in terms of training frequency (mean 3.08 ± 0.90 time/wk., p = 0.735), time (mean 2.93 ± 1.34 h/wk., p = 0.079) and running distance (mean 29.5 ± 14.3 km/wk., p = 0.054). Moreover, similar maximum power output (PmaxBW) was observed in all three groups (OMN: 4.15 ± 0.48 W/kg, LOV: 4.20 ± 0.47 W/kg, VEG: 4.16 ± 0.55 W/kg; p = 0.917) and no differences regarding [lac] throughout the exercise test and maximum lactate could be observed between the groups (OMN: 11.3 ± 2.19 mmol/l, LOV: 11.0 ± 2.59 mmol/l, VEG: 11.9 ± 1.98 mmol/l; p = 0.648). Conclusion The data indicate that each examined diet has neither advantages nor disadvantages with regard to exercise capacity. These results suggest that a vegan diet can be a suitable alternative for ambitious recreational runners

    Characterization, dietary habits and nutritional intake of omnivorous, lacto-ovo vegetarian and vegan runners – a pilot study

    Get PDF
    Background The number of people preferring plant-based nutrition is growing continuously in the western world. Vegetarianism and veganism are also becoming increasingly popular among individuals participating in sport. However, whether recreationally active vegetarian and vegan populations can meet their nutritional needs is not clear. Methods The purpose of this cross-sectional study was to compare the nutrient intake of omnivorous (OMN, n = 27), lacto-ovo vegetarian (LOV, n = 25) and vegan (VEG, n = 27) recreational runners (two to five training sessions per week) with intake recommendations of the German, Austrian and Swiss Nutrition Societies (Deutsche, Österreichische und Schweizerische Gesellschaften für Ernährung, D-A-CH) for the general population. Lifestyle factors and supplement intake were examined via questionnaires; dietary habits and nutrient intake were determined based on 3-day dietary records. Results More than half of each group did not reach the recommended energy intake (OMN: 10.4, 8.70–12.1; LOV: 9.67, 8.55–10.8; VEG: 10.2, 9.12–11.3 MJ). Carbohydrate intake was slightly below the recommendations of > 50 EN% in OMN (46.7, 43.6–49.8 EN%), while LOV (49.4, 45.5–53.3 EN%) and VEG (55.2, 51.4–59.0 EN%) consumed adequate amounts (p = 0.003). The recommended protein intake of 0.8 g/kg body weight (D-A-CH) was exceeded in all three groups (OMN: 1.50, 1.27–1.66; LOV: 1.34, 1.09–1.56; VEG: 1.25; 1.07–1.42 g/kg BW; p = 0.047). Only VEG (26.3, 22.7–29.8 EN%) did not achieve the recommended fat intake of 30 EN%. The supply of micronutrients, such as vitamin D and cobalamin, was dependent on supplement intake. Additionally, female OMN and LOV achieved the recommended daily intake of 15 mg iron only after supplementation, while VEG consumed adequate amounts solely via food. Conclusion All three groups were sufficiently supplied with most nutrients despite the exceptions mentioned above. The VEG group even showed advantages in nutrient intake (e.g. carbohydrates, fiber and iron) in comparison to the other groups. However, the demand for energy and several macro- and micronutrients might be higher for athletes. Thus, it is also necessary to analyze the endogenous status of nutrients to evaluate the influence of a vegetarian and vegan diet on the nutrient supply of athletes

    Exercise-induced oxidative stress, nitric oxide and plasma amino acid profile in recreational runners with vegetarian and non-vegetarian dietary patterns

    Get PDF
    This study investigated the exercise-induced changes in oxidative stress, nitric oxide (NO) metabolism and amino acid profile in plasma of omnivorous (OMN, n = 25), lacto-ovo-vegetarian (LOV, n = 25) and vegan (VEG, n = 23) recreational runners. Oxidative stress was measured as malondialdehyde (MDA), NO as nitrite and nitrate, and various amino acids, including homoarginine and guanidinoacetate, the precursor of creatine. All analytes were measured by validated stable-isotope dilution gas chromatographic-mass spectrometric methods. Pre-exercise, VEG had the highest MDA and nitrate concentrations, whereas nitrite concentration was highest in LOV. Amino acid profiles differed between the groups, with guanidinoacetate being highest in OMN. Upon acute exercise, MDA increased in the LOV and VEG group, whereas nitrate, nitrite and creatinine did not change. Amino acid profiles changed post-exercise in all groups, with the greatest changes being observed for alanine (+28% in OMN, +21% in LOV and +28% in VEG). Pre-exercise, OMN, LOV and VEG recreational runners differ with respect to oxidative stress, NO metabolism and amino acid profiles, in part due to their different dietary pattern. Exercise elicited different changes in oxidative stress with no changes in NO metabolism and closely comparable elevations in alanine. Guanidinoacetate seems to be differently utilized in OMN, LOV and VEG, pre- and post-exercise

    Telemonitoring-Supported Exercise Training in Employees With Metabolic Syndrome Improves Liver Inflammation and Fibrosis

    Get PDF
    INTRODUCTION:Metabolic syndrome (MetS) is a major health problem worldwide and the main risk factor for metabolic-associated fatty liver disease (MAFLD). Established treatment options are lifestyle interventions facilitating dietary change and increased physical activity. Here, we tested the effect of a telemonitoring-supported intervention on liver parameter of inflammation and fibrosis in individuals with MetS.METHODS:This was a prospective, randomized, parallel-group, and assessor-blind study performed in workers of the main Volkswagen factory (Wolfsburg, Germany). Volunteers with diagnosed MetS were randomly assigned (1:1) to a 6-month lifestyle intervention focusing on supervised, activity-tracker-guided exercise or to a waiting-list control group. This secondary analysis assessed the effect of the intervention on liver enzymes and MAFLD-related parameters.RESULTS:We screened 543 individuals between October 10, 2017, and February 27, 2018, of whom 314 were randomly assigned to the intervention group (n = 160) or control group (n = 154). Liver transaminases, alkaline phosphatase, and gamma-glutamyl transferase significantly decreased after 6 months in the intervention group compared with the CG. Furthermore, an aspartate aminotransferase-to-platelet ratio index score as a marker for liver fibrosis significantly decreased in the intervention group. These improvements were associated with changes in obesity and exercise capacity.DISCUSSION:A 6-month lifestyle intervention based on exercise training with individualized telemonitoring-based supervision led to improvements of liver inflammation and fibrosis in employees with MetS. Therefore, this intervention shows therapeutic potential for individuals at high risk of MAFLD (ClinicalTrials.gov Identifier: NCT03293264)

    Impact of Nutrition on Short-Term Exercise-Induced Sirtuin Regulation: Vegans Differ from Omnivores and Lacto-Ovo Vegetarians

    No full text
    Both nutrition and exercise are known to affect metabolic regulation in humans. Sirtuins are essential regulators of cellular energy metabolism; SIRT1, SIRT3, and SIRT4 have a direct effect on glycolysis, oxidative phosphorylation, and fatty acid oxidation. This cross-sectional study investigates the effect of different diets on exercise-induced regulation of sirtuins. SIRT1 and SIRT3–SIRT5 were measured in blood from omnivorous, lacto-ovo vegetarian, and vegan recreational runners (21–25 subjects, respectively) before and after exercise at the transcript, protein, and enzymatic levels. SIRT1, SIRT3, and SIRT5 enzyme activities increased during exercise in omnivores and lacto-ovo vegetarians, commensurate with increased energy demand. However, activities decreased in vegans. Malondialdehyde as a surrogate marker of oxidative stress inversely correlated with sirtuin activities and was elevated in vegans after exercise compared to both other groups. A significant negative correlation of all sirtuins with the intake of the antioxidative substances, ascorbate and tocopherol, was found. In vegan participants, increased oxidative stress despite higher amounts of the antioxidative substances in the diet was observed after exercise

    Micronutrient Status of Recreational Runners with Vegetarian or Non-Vegetarian Dietary Patterns

    Get PDF
    Vegetarian diets have gained popularity in sports. However, few data exist on the status of micronutrients and related biomarkers for vegetarian and vegan athletes. The aim of this cross-sectional study was to compare the micronutrient status of omnivorous (OMN, n = 27), lacto-ovo-vegetarian (LOV, n = 26), and vegan (VEG, n = 28) recreational runners. Biomarkers of vitamin B12, folate, vitamin D, and iron were assessed. Additionally, serum levels of calcium, magnesium, and zinc were examined. Lifestyle factors and supplement intake were recorded via questionnaires. About 80% of each group showed vitamin B12 adequacy with higher levels in supplement users. Mean red blood cell folate exceeded the reference range (>340 nmol/L) in all three groups (OMN: 2213 ± 444, LOV: 2236 ± 596, and VEG: 2354 ± 639 nmol/L; not significant, n.s.). Furthermore, vitamin D levels were comparable (OMN: 90.6 ± 32.1, LOV: 76.8 ± 33.7, and VEG: 86.2 ± 39.5 nmol/L; n.s.), and we found low prevalence (<20%) of vitamin D inadequacy in all three groups. Less than 30% of each group had depleted iron stores, however, iron deficiency anemia was not found in any subject. Our findings suggest that a well-planned, health-conscious lacto-ovo-vegetarian and vegan diet, including supplements, can meet the athlete’s requirements of vitamin B12, vitamin D and iron

    High Intensity High Volume Interval Training Improves Endurance Performance and Induces a Nearly Complete Slow-to-Fast Fiber Transformation on the mRNA Level

    Get PDF
    We present here a longitudinal study determining the effects of two 3 week-periods of high intensity high volume interval training (HIHVT) (90 intervals of 6 s cycling at 250% maximum power, Pmax/24 s) on a cycle ergometer. HIHVT was evaluated by comparing performance tests before and after the entire training (baseline, BSL, and endpoint, END) and between the two training sets (intermediate, INT). The mRNA expression levels of myosin heavy chain (MHC) isoforms and markers of energy metabolism were analyzed in M. vastus lateralis biopsies by quantitative real-time PCR. In incremental tests peak power (Ppeak) was increased, whereas V˙O2peak was unaltered. Prolonged time-to-exhaustion was found in endurance tests with 65 and 80% Pmax at INT and END. No changes in blood levels of lipid metabolites were detected. Training-induced decreases of hematocrit indicate hypervolemia. A shift from slow MHCI/β to fast MHCIIa mRNA expression occurred after the first and second training set. The mRNA expression of peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α), a master regulator of oxidative energy metabolism, decreased after the second training set. In agreement, a significant decrease was also found for citrate synthase mRNA after the second training set, indicating reduced oxidative capacity. However, mRNA expression levels of glycolytic marker enzyme glyceraldehyde-3-phosphate dehydrogenase did not change after the first and second training set. HIHVT induced a nearly complete slow-to-fast fiber type transformation on the mRNA level, which, however, cannot account for the improvements of performance parameters. The latter might be explained by the well-known effects of hypervolemia on exercise performance
    corecore