8,500 research outputs found

    Finite-size scaling of the quasiespecies model

    Full text link
    We use finite-size scaling to investigate the critical behavior of the quasiespecies model of molecular evolution in the single-sharp-peak replication landscape. This model exhibits a sharp threshold phenomenon at Q=Q_c=1/a, where Q is the probability of exact replication of a molecule of length L and a is the selective advantage of the master string. We investigate the sharpness of the threshold and find that its characteristic persist across a range of Q of order L^(-1) about Q_c. Furthermore, using the data collapsing method we show that the normalized mean Hamming distance between the master string and the entire population, as well as the properly scaled fluctuations around this mean value, follow universal forms in the critical region.Comment: 8 pages,tex. Submitted to Physical Review

    Physics, Stability and Dynamics of Supply Networks

    Full text link
    We show how to treat supply networks as physical transport problems governed by balance equations and equations for the adaptation of production speeds. Although the non-linear behaviour is different, the linearized set of coupled differential equations is formally related to those of mechanical or electrical oscillator networks. Supply networks possess interesting new features due to their complex topology and directed links. We derive analytical conditions for absolute and convective instabilities. The empirically observed "bull-whip effect" in supply chains is explained as a form of convective instability based on resonance effects. Moreover, it is generalized to arbitrary supply networks. Their related eigenvalues are usually complex, depending on the network structure (even without loops). Therefore, their generic behavior is characterized by oscillations. We also show that regular distribution networks possess two negative eigenvalues only, but perturbations generate a spectrum of complex eigenvalues.Comment: For related work see http://www.helbing.or

    Observation of Weak Collapse in a Bose-Einstein Condensate

    Get PDF
    We study the collapse of an attractive atomic Bose-Einstein condensate prepared in the uniform potential of an optical-box trap. We characterize the critical point for collapse and the collapse dynamics, observing universal behavior in agreement with theoretical expectations. Most importantly, we observe a clear experimental signature of the counterintuitive weak collapse, namely, that making the system more unstable can result in a smaller particle loss. We experimentally determine the scaling laws that govern the weak-collapse atom loss, providing a benchmark for the general theories of nonlinear wave phenomena.The GeForce GTX TITAN X used for the numerical simulations was donated by the NVIDIA Corporation. This work was supported by the Royal Society, EPSRC (Grant No. EP/ N011759/1), ERC (QBox), AFOSR, and ARO. A. L. G. and N. N. acknowledge support from Trinity College, Cambridge

    Search for the scalar a0a_0 and f0f_0 mesons in the reactions e+e−→γπ0π0(η)e^+e^-\to\gamma\pi^0\pi^0(\eta)

    Full text link
    It is shown that the reactions e+e−→γπ0π0(η)e^+e^-\to\gamma\pi^0\pi^0(\eta) give a good chance for observing scalar a0a_0 and f0f_0 mesons. In the photon energy region less then 100 MeV the vector meson contributions e+e−→V0→π0V′0→γπ0π0(η)e^+e^-\to V^0\to\pi^0 V'^0\to\gamma\pi^0\pi^0(\eta) are negligible in comparison with the scalar mesons e+e−→ϕ→γf0(a0)→γπ0π0(η)e^+e^-\to\phi\to\gamma f_0(a_0)\to\gamma\pi^0\pi^0(\eta) for BR(ϕ→γf0(a0)→γπ0π0(η))BR(\phi\to\gamma f_0(a_0)\to\gamma\pi^0\pi^0(\eta)) greater than 5⋅10−6(10−5)5\cdot10^{-6}(10^{-5}). Using two-channel treatment of the ππ\pi\pi scattering the predictions for BR(ϕ→γ(f0+σ)→γππ)BR(\phi\to\gamma (f_0+\sigma)\to\gamma\pi\pi) are derived. The four quark model, the model of KKˉK\bar K molecule and thessˉs\bar s model of scalar f0f_0 and a0a_0 mesons are discussed.Comment: 31 pages, 10 ps files of figures, minor numerical changes, Appendix corrected, to be published in Phys.Rev.

    Error threshold in optimal coding, numerical criteria and classes of universalities for complexity

    Full text link
    The free energy of the Random Energy Model at the transition point between ferromagnetic and spin glass phases is calculated. At this point, equivalent to the decoding error threshold in optimal codes, free energy has finite size corrections proportional to the square root of the number of degrees. The response of the magnetization to the ferromagnetic couplings is maximal at the values of magnetization equal to half. We give several criteria of complexity and define different universality classes. According to our classification, at the lowest class of complexity are random graph, Markov Models and Hidden Markov Models. At the next level is Sherrington-Kirkpatrick spin glass, connected with neuron-network models. On a higher level are critical theories, spin glass phase of Random Energy Model, percolation, self organized criticality (SOC). The top level class involves HOT design, error threshold in optimal coding, language, and, maybe, financial market. Alive systems are also related with the last class. A concept of anti-resonance is suggested for the complex systems.Comment: 17 page

    Analytical Investigation of Innovation Dynamics Considering Stochasticity in the Evaluation of Fitness

    Full text link
    We investigate a selection-mutation model for the dynamics of technological innovation,a special case of reaction-diffusion equations. Although mutations are assumed to increase the variety of technologies, not their average success ("fitness"), they are an essential prerequisite for innovation. Together with a selection of above-average technologies due to imitation behavior, they are the "driving force" for the continuous increase in fitness. We will give analytical solutions for the probability distribution of technologies for special cases and in the limit of large times. The selection dynamics is modelled by a "proportional imitation" of better technologies. However, the assessment of a technology's fitness may be imperfect and, therefore, vary stochastically. We will derive conditions, under which wrong assessment of fitness can accelerate the innovation dynamics, as it has been found in some surprising numerical investigations.Comment: For related work see http://www.helbing.or

    Co-Evolution of quasispecies: B-cell mutation rates maximize viral error catastrophes

    Full text link
    Co-evolution of two coupled quasispecies is studied, motivated by the competition between viral evolution and adapting immune response. In this co-adaptive model, besides the classical error catastrophe for high virus mutation rates, a second ``adaptation-'' catastrophe occurs, when virus mutation rates are too small to escape immune attack. Maximizing both regimes of viral error catastrophes is a possible strategy for an optimal immune response, reducing the range of allowed viral mutation rates to a minimum. From this requirement one obtains constraints on B-cell mutation rates and receptor lengths, yielding an estimate of somatic hypermutation rates in the germinal center in accordance with observation.Comment: 4 pages RevTeX including 2 figure

    Self-replication and evolution of DNA crystals

    Get PDF
    Is it possible to create a simple physical system that is capable of replicating itself? Can such a system evolve interesting behaviors, thus allowing it to adapt to a wide range of environments? This paper presents a design for such a replicator constructed exclusively from synthetic DNA. The basis for the replicator is crystal growth: information is stored in the spatial arrangement of monomers and copied from layer to layer by templating. Replication is achieved by fragmentation of crystals, which produces new crystals that carry the same information. Crystal replication avoids intrinsic problems associated with template-directed mechanisms for replication of one-dimensional polymers. A key innovation of our work is that by using programmable DNA tiles as the crystal monomers, we can design crystal growth processes that apply interesting selective pressures to the evolving sequences. While evolution requires that copying occur with high accuracy, we show how to adapt error-correction techniques from algorithmic self-assembly to lower the replication error rate as much as is required

    ‘Stick that knife in me’: Shane Meadows’ children

    Get PDF
    This article brings Shane Meadows’ Dead Man's Shoes (2004) into dialogue with the history of the depiction of the child on film. Exploring Meadows’ work for its complex investment in the figure of the child on screen, it traces the limits of the liberal ideology of the child in his cinema and the structures of feeling mobilised by its uses – at once aesthetic and sociological – of technologies of vision

    Design for a Darwinian Brain: Part 1. Philosophy and Neuroscience

    Full text link
    Physical symbol systems are needed for open-ended cognition. A good way to understand physical symbol systems is by comparison of thought to chemistry. Both have systematicity, productivity and compositionality. The state of the art in cognitive architectures for open-ended cognition is critically assessed. I conclude that a cognitive architecture that evolves symbol structures in the brain is a promising candidate to explain open-ended cognition. Part 2 of the paper presents such a cognitive architecture.Comment: Darwinian Neurodynamics. Submitted as a two part paper to Living Machines 2013 Natural History Museum, Londo
    • …
    corecore