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We study the collapse of an attractive atomic Bose-Einstein condensate prepared in the uniform
potential of an optical-box trap. We characterize the critical point for collapse and the collapse dynamics,
observing universal behavior in agreement with theoretical expectations. Most importantly, we observe a
clear experimental signature of the counterintuitive weak collapse, namely, that making the system more
unstable can result in a smaller particle loss. We experimentally determine the scaling laws that govern
the weak-collapse atom loss, providing a benchmark for the general theories of nonlinear wave
phenomena.
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I. INTRODUCTION

Wave collapse occurs in a wide range of physical
contexts, including optics and atomic and condensed-matter
physics. Generally, collapse occurs if an attractive non-
linearity exceeds a critical value. If the collapse is triggered
at time t ¼ 0, thewave amplitude asymptotically diverges at
some point in space as the collapse time tc is approached. In
practice, the amplitude divergence results in dissipation of
wave energy (or particle loss).
The unifying theoretical framework for understanding

different collapse phenomena is provided by the nonlinear
Schrödinger equation, which has been extensively studied
for various forms of nonlinearity [1,2]. This general formal-
ism is applied to self-focusing of light [3–7], collapse of
Langmuir waves [8,9], and Bose-Einstein condensates
(BECs) [10–14], as well as to surface water waves [15,16].
In this framework, wave collapse is classified as either

strong or weak (see Fig. 1). In a strong collapse, a finite
fraction of the wave collapses towards the singularity. On
the other hand, in a weak collapse [17–19], the fraction of
the wave that (in the absence of dissipation) ultimately
reaches the singularity vanishes. This has the counterin-
tuitive practical implication that making the system more
unstable, by quenching the nonlinearity further beyond the
critical point, can result in less dissipation [19,20].
Qualitatively, once the collapse is triggered, for stronger
attractive interactions, it happens faster and progresses
further before dissipative processes halt it; consequently,

the wave amplitude is larger at the point in time when
dissipation occurs, and for weak collapse, this means that a
smaller fraction of the wave is actually dissipated. To our
knowledge, weak collapse has not been experimentally
observed in any physical system.
An atomic BEC with s-wave two-body interactions is

modeled by the Gross-Pitaevskii (GP) equation, with a
cubic nonlinearity proportional to the scattering length a,
which can be dynamically tuned via a Feshbach resonance
[21]. The BEC is prone to collapse for any a < 0, but a
kinetic-energy barrier makes it metastable up to a critical
interaction strength [10–14]. If the BEC becomes unstable
and collapses, dissipation occurs through three-body
recombination that results in particle loss. Importantly,
the three-dimensional GP equation is expected to provide
an example of weak collapse.
Previous collapse experiments with atomic BECs

[22–27] (see also Ref. [28]) were performed in the tradi-
tional setting of a harmonic trap. The critical point [23] and
collapse times [24,26] were in general agreement with
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FIG. 1. Strong versus weak collapse (cartoon). In strong
collapse, a finite portion of the wave (here 100%, for simplicity)
collapses towards the singularity. In weak collapse, as time
progresses, a diminishing fraction of the wave approaches the
singularity, with long tails left behind.
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theoretical expectations [10,36–43], but no evidence of
weak collapse was observed; the atom loss was only seen to
grow with jaj [25].
In this article, we study BEC collapse in a new

experimental setting, using a 39K condensate [44,45]
prepared in the uniform potential of an optical-box trap
[46]; for details of our setup, see Appendix A. The
combination of large system size (up to 41 μm) and
fine-tuning of the scattering length (with a resolution of
0.03a0, where a0 is the Bohr radius) gives us a very large
dynamic range: We observe metastable attractive BECs
with up to 2 × 105 atoms and collapse times that vary
between 3 and 400 ms. We demonstrate the expected
scaling of the critical scattering length ac with the BEC
atom number N and the system size L, and show that the
collapse time can be expressed as a universal function of
the dimensionless interaction strength aN=L. Most impor-
tantly, we observe conclusive evidence for weak collapse,
namely, the counterintuitive decrease of the atom loss with
increasing jaj, and experimentally determine the scaling
laws that govern the weak-collapse atom loss. The weak
nature of the collapse is directly revealed only by resolving
single collapse events, and it is obscured in the multiple-
collapse regime, which has been seen in previous
cold-atom experiments.
In Secs. II–IV, we address the following in turn: (i) the

critical point for the collapse, (ii) the collapse dynamics in a
system that is suddenly made unstable by an interaction
quench, and (iii) the aftermath of the collapse, which
reveals its weak nature.

II. CRITICAL POINT

The starting point for our discussion is the GP equation
for a homogeneous box potential, with a heuristically added
three-body loss term [13]:

iℏ
∂ψ
∂t ¼ −

ℏ2

2m
∇2ψ þ 4πℏ2a

m
jψ j2ψ − i

ℏK3

2
jψ j4ψ ; ð1Þ

where m is the atom mass, K3 is the three-body loss
coefficient, ψ is normalized to the atom number N, and the
boundary condition is ψ ¼ 0 at the trap walls.
We use a cylindrical box trap [46] of variable length L

and radius R, and always set R ¼ L=2, so L is the only
length scale characterizing the system size. We may thus
rewrite Eq. (1) in a dimensionless form, defining ~r ¼ r=L
and ~t ¼ t=τ0, with characteristic time τ0 ¼ 2mL2=ℏ:

i
∂ ~ψ

∂~t ¼ −∇2 ~ψ þ αj ~ψ j2 ~ψ − iηj ~ψ j4 ~ψ ; ð2Þ

where

α ¼ 8πaN
L

and η ¼ N2mK3

ℏL4
; ð3Þ

and ~ψ is initially normalized to unity. For the range of
scattering lengths that we study, we assume that K3 is
constant [47,48], with the value 1.3ð5Þ × 10−41 m6 s−1

[49]. The corresponding value of η, for all our L and N
values, is very small (<6 × 10−4), and thus three-body loss
is negligible in our (meta)stable condensates. However, if
the BEC collapses, significant loss occurs, providing the
primary experimental signature of the collapse.
Neglecting the atom loss in a metastable BEC, based on

Eq. (2), the critical interaction strength αc can depend only
on the boundary conditions, i.e., the box shape. For a
family of self-similar boxes (R=L ¼ const), it should be a
universal constant, so ac ∝ L=N.
To experimentally study the critical point for collapse,

we prepare a stable BEC at 4a0; then over 1 s, we ramp the
scattering length to a variable a < 0 and wait for 2 s before
turning off the trap and imaging the atoms after 100 ms of
time-of-flight (ToF) expansion. We image the cloud along
the axial direction of our cylindrical trap, and for ToF we
jump the scattering length to 20a0.
In Fig. 2(a), we show how, for a given initial N, the final

atom number depends on the negative a. Awell-defined ac
is signaled by a sharp drop in the atom number. As shown
in Fig. 2(b), the atom loss is accompanied by a qualitative
change in the appearance of the cloud in ToF.
In Fig. 2(c), we plot ac for L ¼ 30 μm and a wide range

of N values, from 104 to 2 × 105. We clearly observe
the expected scaling ac ∝ 1=N (see also Appendix B).
In Fig. 2(d), we plot the measured Nac versus box size and
confirm the scaling Nac ∝ L. We find that the dimension-
less critical interaction strength is αc ¼ −4ð1Þ, where the
error includes the systematic uncertainties in box size and
absolute atom number calibration. For comparison, numeri-
cal simulations of the GP equation for our box geometry
give αc ¼ −4.3.

FIG. 2. Critical point for collapse. (a) Final atom number, Nf ,
after ramping to a variable negative a, for L ¼ 30ð1Þ μm and
initial N ¼ 18.7ð5Þ × 104. The critical scattering length ac is seen
in the sharp drop in Nf . (b) ToF images taken on either side of the
critical point. (c) Variation of ac with N, for L ¼ 30 μm. The
linear fit confirms the expected scaling ac ∝ 1=N. (d) Variation of
Nac with L. The linear fit confirms the scaling Nac ∝ L.
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III. COLLAPSE DYNAMICS

To study the collapse dynamics, we perform interaction-
quench experiments [24]. We prepare a BEC just above ac
and then quench the scattering length to a variable a < ac
to initiate the collapse (see Appendix B for more details).
After a variable hold time t, we jump the scattering length
to 20a0, switch off the trap, and observe the cloud in ToF.
As shown in the left panel of Fig. 3(a), for quenches

close to the critical point (small ja − acj), at tc the atom
number suddenly drops to a stable lower value. We

understand this as a single collapse event. On the other
hand, for large quenches [right panel of Fig. 3(a)], the atom
number appears to gradually decay until it stabilizes. Such
behavior, also seen in Refs. [24,26], is understood as
arising from a series of multiple (experimentally unre-
solved) collapses [13,20,36,37,50–54], and we accordingly
associate tc with the onset of the atom loss [55]. (For further
evidence for the occurrence of single and multiple discrete
collapse events, see Appendix C.)
In Fig. 3(b), we show typical ToF images for different

times after the quench. At t < tc, before any change in the
atom number occurs, the swelling of the cloud in ToF
reveals the shrinking of the wave function in-trap. Right
after tc, within the first ≈ 10ms, we observe that the
remnant cloud consists of a lower-energy central part and a
higher-energy shell, reminiscent of the atom bursts gen-
erated during collapse in Ref. [24]. At longer times, we
observe more irregular patterns. We see a similar shell
structure in images taken along a perpendicular direction,
which implies that the outgoing atom shell is spherical.
Based on its size in ToF, the shell expands at a rate of
≈ 2 mm=s, which is consistent with it reflecting off the trap
walls and interfering with the central part of the cloud
after ≈ 10 ms.
In Fig. 3(c), we plot tc versus a for six data sets taken

with different L and N values. We observe tc values that
vary between 3 and 400 ms. In Fig. 3(d), we show that all
the data points fall onto a single universal curve if we plot
the dimensionless collapse time tc=τ0 versus the reduced
distance from the critical point, ða − acÞ=ac ≡ ðα − αcÞ=αc.
In general, tc could also depend on η, but the universal
behavior seen in Fig. 3(d) shows that this effect is
negligible for our range of η, between 4 × 10−5 and
4 × 10−4. The solid line in Fig. 3(d) shows results of
lossless GP simulations, without any free parameters; we
reproduce a very similar dependence of tc on α, although
the numerical values are systematically slightly below the
experimental ones.

IV. WEAK COLLAPSE

We now turn to the aftermath of the collapse. Since ~ψ is
initially normalized to unity, the fractional atom loss
ΔN=N should be some universal function of α and η;
here, ΔN ¼ N − Nf is the difference between the initial
(precollapse) and the final (time-dependent) atom number.
The counterintuitive implication of the weak-collapse
theory is that ΔN=N decreases if the BEC is made more
unstable, by quenching a to a more negative value.
In Fig. 4, we focus on one data set, for fixed L ¼ 30 μm

and N ¼ 20.3 × 104. As we illustrate in the left panel of
Fig. 4(a), close to the critical point, where we observe only
single-collapse events, the atom loss indeed decreases with
increasing jaj, indicating weak collapse. On the other hand,
as shown in the right panel of Fig. 4(a), in the regime of

FIG. 3. Collapse dynamics. (a) Atom number versus time
after quenches to a ¼ −0.86a0 (left panel) and −2.19a0 (right
panel); here, L ¼ 30 μm and N ¼ 11.4 × 104, corresponding to
ac ¼ −0.79a0. Green bands indicate tc and its uncertainty.
(b) Typical ToF images at various stages after the quench (here,
for a ¼ −1.02a0). (c) Collapse time versus a for six data sets
taken for various L and N; see legend in (d). The shaded bands
indicate ac values. (d) Universal collapse dynamics. We plot the
dimensionless collapse time versus the reduced distance from the
critical point, for all six data sets. The solid line shows the results
of lossless GP simulations without any free parameters.
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large quenches and multiple collapse, the atom loss in the
long-time limit shows the opposite trend; only this type of
behavior was seen in harmonic-trap experiments [24,25].
In Fig. 4(b), we present a consistent picture of the atom-

loss trends for all a < ac, from a=ac ≈ 1 to a=ac → ∞.
Here, we plot ΔN=N versus ac=jaj, and for each a, we
show ΔN=N values observed for all t; the points clustered
around ΔN ¼ 0 correspond to t < tc.
The single-collapse regime, ac=jaj < −0.6, is clearly

identified by the small spread of the nonzero ΔN values.
The single-collapse atom loss clearly decreases with
increasing jaj and extrapolates to zero for ac=jaj → 0.
This is the unambiguous signature of a weak collapse. The
dot-dashed black line shows a linear extrapolation, which
gives ΔN=N ¼ −0.02ð2Þ for ac=jaj ¼ 0, while the (almost
indistinguishable) solid black line shows a power-law
fit, ΔN=N ∝ jaj−1.05ð7Þ.
For ac=jaj > −0.6, multiple collapse occurs because the

diminishing single-collapse atom loss does not restabilize
the system. However, we see that even in this regime,

the minimal loss we observe at each a still follows the
weak-collapse trend (solid black line). It is also instructive
to plot the function ΔN=N ¼ 1 − ac=a (dashed purple
line); this is atom loss such that, after a quench to a given
a < ac, the atom number drops to the new critical value
NcðaÞ ¼ αcL=ð8πaÞ ¼ Nac=a [see Eq. (3)]. This equilib-
rium stability criterion is not obviously applicable in the
nonequilibrium situation after the first collapse [25]. Still, it
provides a good estimate of both the point, ac=jaj ≈ −0.6,
beyond which the single-collapse loss is insufficient to
restabilize the system (see also Appendix C) and the long-
time loss at large a=ac.
We now extend the study of the weak-collapse atom loss

to other L and N values (see Fig. 5). In this analysis, we
include all a values for which only single collapse occurs
and also those where clearly resolved single and double
collapses occur (see Appendix C).
WritingΔN=N ∝ jaj−γ for each data set with fixed L and

N, as in Fig. 4(b), we always get γ consistent with unity
[see Fig. 5(a)]; averaging over all data sets gives
γ̄ ¼ 1.02ð2Þ. We then assume the form ΔN=N ¼ C=jaj
and study the dependence of C on L and N. As shown in
Fig. 5(b), on a log-log plot, we find C ∝ N−0.51ð2Þ, with
no clear dependence on L; the two points taken with
L ¼ 16 μm and 41 μm fall onto the same line as the four
points taken with L ¼ 30 μm.

FIG. 4. Observation of weak collapse. Here L ¼ 30 μm and
N ¼ 20.3 × 104, corresponding to ac ¼ −0.44a0. (a) Atom loss
versus time after quenches to various a values. For small ja − acj
(left panel)ΔN=N decreases with increasing jaj, as expected for a
weak collapse, while for large ja − acj (right panel) the opposite
trend is seen. (b) Summary of atom loss for all t and a < ac. The
colored points are the data shown in (a), and the points clustered
around ΔN ¼ 0 correspond to t < tc. Single-collapse loss mono-
tonically decreases with increasing jaj and extrapolates to zero
for ac=jaj → 0 (dot-dashed and solid black lines, see text),
confirming the prediction of the weak-collapse theory. For
ac=jaj > −0.6 single collapse does not re-stabilise the system
and multiple collapse occurs. The dashed purple line shows the
equilibrium stability criterion, ΔN=N ¼ 1 − ac=a (see text).

FIG. 5. Weak-collapse scaling laws. (a) Writing ΔN=N ∝ jaj−γ
for fixed L and N, for our six data sets we get an average
γ̄ ¼ 1.02ð2Þ. (b) Assuming ΔN=N ¼ C=jaj, we find C ∝
N−0.51ð2Þ (solid black line), with no dependence on L.
(c) Universal behavior of the weak-collapse atom loss. We plot
all the single-collapse data for different a, N, and L versus
η1=4=jαj, which vanishes in the limit of infinitely strong attractive
interactions, jαj → ∞. The linear fit gives ΔN=N ≈ 13η1=4=jαj.
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We thus experimentally find that weak-collapse atom
loss is described very well by ΔN=N ∝ 1=ð ffiffiffiffi

N
p jajÞ. From

Eq. (3), this corresponds to ΔN=N ∝ η1=4=jαj, which is
indeed independent of L and vanishes in the limit of
infinitely strong attraction, jαj → ∞. We note that while the
weak-collapse atom loss does not depend on L (the overall
size of the box), it may depend on the box shape; this is an
interesting question for future research.
In Fig. 5(c), we plot all of our single-collapse data versus

η1=4=jαj and confirm that they fall onto a single universal
curve [56]. These experimentally obtained scaling laws
should provide useful input for further theoretical work.

V. CONCLUSIONS AND OUTLOOK

In conclusion, we have performed a comprehensive
study of the collapse of an attractive BEC confined in
the homogeneous potential of a 3D box trap. We have fully
characterized the critical point for collapse and the collapse
dynamics of an interaction-quenched BEC, finding univer-
sal behavior in agreement with the theoretical expectations.
Most importantly, we have provided conclusive experi-
mental evidence for the counterintuitive weak collapse and
experimentally determined weak-collapse scaling laws that
should provide a useful reference point for the general
theories of nonlinear wave phenomena.
Ourwork also points tomany avenues for further research.

It would be very interesting to explore quenches from a large
positive a, where the BEC is initially deep in the Thomas-
Fermi regime, and in the case of a box potential, the density is
uniform. In this case, it is not obvious how the condensate
would spontaneously “choose” the position at which to
collapse or whether many local collapses would occur
instead of a global one. Additionally, since the fractional
atom loss cannot exceed 100%, the linear trend seen in
Fig. 5(c) cannot extend to the regime of strong dissipation
(large η). It would be interesting to explore that regime using
a different geometry, a different Feshbach resonance, or a
different atomic species. Finally, a major extension would be
to perform similar experiments with 2D gases, for which a
strong collapse and hence fundamentally different behavior
are expected.
The data presented in this paper are available for

download [57].
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APPENDIX A: EXPERIMENTAL SETUP

Our setup is the first 3D BEC box experiment with
tunable interactions. The setup for producing harmonically
trapped 39K condensates is similar to our previous appa-
ratus [45]. The main difference is that here we employ the
gray molasses technique [58–60] and directly cool 39K
without the need for sympathetic cooling with rubidium
atoms (see also Refs. [61,62]). We load the laser-cooled
atoms directly into a crossed optical dipole trap (using a
20-W 1070-nm laser) and achieve efficient evaporative
cooling using the Feshbach resonance in the jF;mFi ¼
j1; 1i state at 402.70(3) G [63]. This results in a quasipure
BEC of ≈ 2 × 105 atoms. We then load the atoms into a
cylindrical optical box formed by blue-detuned (532-nm)
laser light and cancel out gravity with a magnetic field
gradient, as in Ref. [46]. The loading procedure is essen-
tially 100% efficient and results in a quasipure box-trapped
BEC of ≈ 2 × 105 atoms.
The Feshbach resonance in the j1; 1i state has a width of

ΔB ¼ 52 G, and the background scattering length is abg ¼
−29a0 [64]. Hence, near the zero crossing of a, at ≈ 350 G,
the variation of the scattering length with the magnetic field
is −abg=ΔB ≈ 0.6a0=G. We tune B in steps of 50 mG,
corresponding to a scattering length resolution of 0.03 a0.

APPENDIX B: SCATTERING
LENGTH CALIBRATION

The exact magnetic field at which the scattering length in
the j1; 1i state vanishes was independently measured in
Ref. [65] to be Ba¼0 ¼ 350.4ð1Þ G. For Figs. 2(a)–2(c), we
calculate our a values assuming Ba¼0 ¼ 350.4 G. Fitting
the data in Fig. 2(c) with a free intercept gives an intercept
acð1=N ¼ 0Þ ¼ 0.03ð1Þa0, which is consistent with zero
within the systematic 0.06a0 error due to the uncertainty in
Ba¼0. We take this to be an unbiased confirmation of the
zero intercept and the expected scaling ac ∝ 1=N, and
we use this scaling to slightly refine the value of the
zero-crossing field, to Ba¼0 ¼ 350.45ð3Þ G. The remaining
30-mG uncertainty in Ba¼0 corresponds to a systematic
uncertainty in our a values of ≈ 0.02a0.
For our interaction quenches, we have determined, using

radio-frequency spectroscopy, that the magnetic field takes
4 ms to change (from 20% to 80% of the jump). We account
for this delay in our determination of the collapse time and
also include an additional 2-ms uncertainty in all the
reported tc values.

APPENDIX C: FROM SINGLE
TO DOUBLE COLLAPSE

In Fig. 6, we present evidence for a gradual transition
between single- and double-collapse events, which strongly
supports the interpretation that an increasing number of
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discrete collapse events occur as jaj is increased. These data
were taken with L ¼ 30 μm and initial N ¼ 11.4 × 104.
In Fig. 6(a), we show the evolution of Nf after a quench

to various a < ac. A fine scan of a resolves a striking
bifurcation of the collapse outcome. We interpret the upper
and lower branches as the result of, respectively, one and
two collapse events. As jaj is increased, the probability of a
double collapse gradually increases. This crossover is
highlighted in the histograms shown on the right.

In Fig. 6(b), we show the fractional atom loss versus jaj
on a log-log plot. In the regime where a double collapse
occurs, the single-collapse branch still clearly follows the
weak-collapse scaling ΔN=N ∝ 1=jaj. Note that in this
data set, the double collapse occurs slightly closer to ac
than expected from the simple equilibrium stability
criterion (purple band).
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