486 research outputs found

    Outer envelope membranes from chloroplasts are isolated as right-side-out vesicles

    Get PDF
    Outer envelope membranes were isolated from purified chloroplasts of pea leaves. The sidedness of the vesicles was analyzed by (i) aqueous polymer-two phase partitioning, (ii) the effect of limited proteolysis on the outer-envelope proteins (OEP) 86 and OEP 7 in intact organelles and isolated membranes, (iii) fluorescence-microscopy and finally (iv) binding of precursor polypeptides to isolated outer-membrane vesicles. The results demonstrate that purified outer envelope membranes occur largely (>90%) as right-side-out vesicles

    Re-Skilling: Enron and the white- collarization and financialization of the energy industry

    Get PDF
    In Risk and Ruin, Gavin Benke argues that we ignore Enron’s history and failures to our peril. The book provides a readable account that includes lots of rich history, institutional detail, and salacious anecdotes, making a convincing case for Enron as a harbinger of financial, environmental, and production crises yet to come in the first decades of the twenty-first century

    Industrial arts merit badges earned by Iowa Eagle Scouts

    Get PDF

    In Vitro Synthesis of Chlorophyll A in the Dark Triggers Accumulation of Chlorophyll A Apoproteins in Barley Etioplasts”

    Get PDF
    An in vitro translation system using lysed etioplasts was developed to test if the accumulation of plastid-encoded chlorophyll a apoproteins is dependent on the de novo synthesis of chlorophyll a. The P700 apoproteins, CP47 and CP43, were not radiolabeled in pulsechase translation assays employing lysed etioplasts in the absence of added chlorophyll precursors. When chlorophyllide a plus phytylpyrophosphate were added to lysed etioplast translation assays in the dark, chlorophyll a was synthesized and radiolabeled P700 apoproteins, CP47 and CP43, and a protein which comigrates with D1 accumulated. Chlorophyllide a or phytylpyrophosphate added separately to the translation assay in darkness did not induce chlorophyll a formation or chlorophyll a apoprotein accumulation. Chlorophyll a formation and chlorophyll a apoprotein accumulation were also induced in the lysed etioplast translation system by the photoreduction of protochlorophyllide to chlorophyllide a in the presence of exogenous phytylpyrophosphate. Accumulation of radiolabeled CP47 was detectable when very low levels of chlorophyll a were synthesized de novo (less than 0.01 nmol/10(7) plastids), and radiolabel increased linearly with increasing de novo chlorophyll a formation. Higher levels of de novo synthesized chlorophyll a were required prior to detection of radiolabel incorporation into the P700 apoproteins and CP43 (greater than 0.01 nmol/10(7) plastids). Radiolabel incorporation into the P700 apoproteins, CP47 and CP43, saturated at a chlorophyll a concentration which corresponds to 50% of the etioplast protochlorophyllide content (0.06 nmol of chlorophyll a/10(7) plastids)

    Lil3 assembles as chlorophyll-binding protein complex during deetiolation

    Get PDF
    AbstractDark-grown angiosperm seedlings are etiolated and devoid of chlorophyll. Deetiolation is triggered by light leading to chlorophyll dependent accumulation of the photosynthetic machinery. The transfer of chlorophyll to the chlorophyll-binding proteins is still unclear. We demonstrate here that upon illumination of dark-grown barley seedlings, two new pigment-binding protein complexes are de novo accumulated. Pigments bound to both complexes are identified as chlorophyll a and protochlorophyll a. By auto-fluorescence tracking and mass spectrometry, we show that exclusively Lil3 is the pigment-binding complex subunit in both complexes

    The proteome of the heterocyst cell wall in Anabaena sp. PCC 7120

    Get PDF
    Anabaena sp. PCC 7120 is a filamentous cyanobacterium that serves as a model to analyze prokaryotic cell differentiation, evolutionary development of plastids, and the regulation of nitrogen fixation. The cell wall is the cellular structure in contact with the surrounding medium. To understand the dynamics of the cell wall proteome during cell differentiation, the cell wall from Anabaena heterocysts was enriched and analyzed. In line with the recently proposed continuity of the outer membrane along the Anabaena filament, most of the proteins identified in the heterocyst cell-wall fraction are also present in the cell wall of vegetative cells, even though the lipid content of both membranes is different
    • 

    corecore