10 research outputs found
Einsatz digitaler Bildanalyse zur Unterscheidung Vaskulärer Anomalien im Kopf-Hals-Bereich
Die histologische Abgrenzung verschiedener Typen vaskulärer Anomalien, wie Lymphangiome, Hämangiome, Paragangliome, venöse und arteriovenöse Malformationen, Granuloma pyogenicum, gestaltet sich aufgrund der Heterogenität dieser Fehlbildungen als sehr schwierig. In dieser Arbeit wurde untersucht, inwiefern eine immunhistologische Quantifizierung von Präparaten vaskulärer Anomalien mittels digitaler Bildanalyse eine genauere Zuordnung der Gefäßmalformationen in ihre Subtypen ermöglicht. Hierzu wurden Gewebe vaskulärer Anomalien von 40 Patienten immunhistologisch untersucht, wobei fünf ausgewählte gefäßendothelassoziierte Marker (CD31, CD34, CLDN5, PDPN, VIM) eingesetzt wurden. Die Färbungen wurden mikroskopisch dokumentiert und eine digitale Bildanalyse und Quantifizierung der Kandidatenmarkerproteine innerhalb der untersuchten Gewebe durchgeführt. Ziel war hierbei, die Beurteilung der digitalen Bildanalyse als Methode zur Unterscheidung von Gefäßmalformationen.
Durch die Betrachtung der Verhältnisse (Quotienten) der digital erfassten und quantifizierten immunhistochemischen Signalwerte, konnten Unterschiede im Expressionsmuster der Kandidatenproteine erkannt werden. In der Gruppe der pyogenen Granulome zeigten sich Quotienten aus CLDN5/CD34 (p<0,01) und VIM/CD34 (p<0,05) als einsetzbar, um eine Abgrenzung zu anderen vaskulären Anomalien zu erreichen (Abbildung 47A-C). Über die Quotienten PDPN/CLDN5 (p<0,001) und PDPN/CD34 (p<0,01) war hingegen eine Unterscheidung von Lymphangiomen zu allen anderen untersuchten vaskulären Anomalien möglich (Abbildung 47A-D).
Der Einsatz der weit etablierten Endothelmarker CD34 und CD31 zeigte erwartungsgemäß eine deutliche Immunreaktivität der Gefäßendothelien. Der Nutzen von PDPN zur Abgrenzung von vaskulären Anomalien lymphatischen Ursprungs von anderen Malformationen konnte aufgezeigt werden. Dies unterstreicht die Zuverlässigkeit von PDPN als lymphangischen Marker, der im Rahmen der histopathologischen Untersuchung vaskulärer Anomalien eine Differentialdiagnose erlaubt. Der Nachweis von CLDN5 im Endothel vaskulärer Anomalien unterstützt dessen zuvor postulierte Rolle bei der vaskulären Differenzierung und Aufrechterhaltung der Gefäßstruktur. Hervorzuheben sind die Ergebnisse des möglichen diagnostischen Nutzens einer digitalen Quantifizierung der Markerproteinexpressionsmuster. Im Hinblick auf zukünftige diagnostische Methoden ist zu erwarten, dass der Einsatz digitaler Hilfsmittel in der klinisch pathologischen Diagnostik weiter zunehmen wird. Ziel sollte es daher sein, digitale Verfahren zur histologischen Auswertung von Gewebeproben zu etablieren.
Die digitale Bildanalyse erweist sich als vielversprechendes Werkzeug zur Erfassung der Expressionsunterschiede der eingesetzten Gefäßmarker im Gewebe vaskulärer Anomalien. Da sich nach digitaler Quantifizierung deutliche Unterschiede im Expressionsgrad der untersuchten Kandidatenproteine innerhalb der vaskulären Anomalien zeigten, eignet sich diese Methode, die sehr heterogene Gruppe der Gefäßfehlbildungen genauer zu klassifizieren. Zu betonen ist allerdings, dass deren Anwendung nicht die Diagnose eines erfahrenen Pathologen ersetzen, sondern vielmehr als diagnostisches Hilfsmittel dienen soll. Wichtig ist hierbei, dass die immunhistochemischen Ergebnisse im Zusammenhang mit dem klinischen Bild betrachtet werden. Noch finden sich häufig Widersprüche zwischen der histopathologischen und der klinischen Zuordnung der Anomalien zu einer der jeweiligen Untergruppen. Dies kann zu Fehldiagnosen beitragen, die sich negativ auf die Wahl der Therapie und deren rechtzeitige Anwendung auswirken. In diesem Zusammenhang kann die digitale Quantifizierung eine Hilfestellung bieten, um die Diagnostik zu objektivieren und zu optimieren. Dass dies möglich ist, konnte in der vorliegenden Arbeit gezeigt werden.
Es wurde zudem deutlich, dass sich die Diagnostik der Gefäßfehlbildungen nicht auf einzelne immunhistochemische Marker beschränken kann. Ziel ist es, ein „Expressionsprofil“ für jedes Gewebe zu erstellen, das auf charakteristischen Proteinenexpressionsmustern der Marker beruht. Die vorliegende Arbeit zeigt, dass bereits unter Einsatz von fünf Markerproteinen eine Abgrenzung innerhalb dieser vaskulären Anomalien möglich ist. Weiterführende Studien mit einer höheren Anzahl vaskulärer Anomalien und zusätzlicher Markerproteine sollten sich anschließen, da hierdurch eine Unterscheidung aller Gefäßfehlbildungen zu erwarten ist. Dies wird das Ziel zukünftiger Untersuchungen sein
The expression of miR-211-5p in sentinel lymph node metastases of malignant melanoma is a potential marker for poor prognosis
Metastatic primary cutaneous melanoma is a frequently fatal disease despite recent therapeutic advances. Biomarkers to stratify patients’ prognosis are lacking. MicroRNAs (miRNAs) are small, non-coding RNAs. We aimed to determine the expression of miR-211-5p in primary tumors and metastases of malignant melanoma and its potential use as a prognostic biomarker. We performed in situ hybridization for miRNA-211-5p on 109 FFPE melanoma samples from 76 patients, including 31 paired primary tumor/metastasis samples. For validation, we performed in silico analyses of TCGA skin cutaneous melanoma (SKCM) cohort. High miR-211-5p expression was more frequent in primary tumors (70.8%) compared to metastases (39.3%). In metastases, it was associated with a significantly worse overall survival. Data from TCGA SKCM cohort confirmed that high miR-211-5p expression in melanoma metastases, but not primary tumors, is associated with worse overall survival. MiR-211-5p expression in metastases is associated with a shorter survival, emphasizing the potential of miR-211-5p as a risk predictor for a less favorable clinical outcome in metastatic disease. In situ hybridization could be implemented in a routine laboratory workflow and can be performed on diagnostic tissue
The Expression of miR-211-5p in Sentinel Lymph Node Metastases of Malignant Melanoma Is a Potential Marker for Poor Prognosis
Metastatic primary cutaneous melanoma is a frequently fatal disease despite recent therapeutic advances. Biomarkers to stratify patients’ prognosis are lacking. MicroRNAs (miRNAs) are small, non-coding RNAs. We aimed to determine the expression of miR-211-5p in primary tumors and metastases of malignant melanoma and its potential use as a prognostic biomarker. We performed in situ hybridization for miRNA-211-5p on 109 FFPE melanoma samples from 76 patients, including 31 paired primary tumor/metastasis samples. For validation, we performed in silico analyses of TCGA skin cutaneous melanoma (SKCM) cohort. High miR-211-5p expression was more frequent in primary tumors (70.8%) compared to metastases (39.3%). In metastases, it was associated with a significantly worse overall survival. Data from TCGA SKCM cohort confirmed that high miR-211-5p expression in melanoma metastases, but not primary tumors, is associated with worse overall survival. MiR-211-5p expression in metastases is associated with a shorter survival, emphasizing the potential of miR-211-5p as a risk predictor for a less favorable clinical outcome in metastatic disease. In situ hybridization could be implemented in a routine laboratory workflow and can be performed on diagnostic tissue
Comprehensive Analyses of miRNAs Revealed miR-92b-3p, miR-182-5p and miR-183-5p as Potential Novel Biomarkers in Melanoma-Derived Extracellular Vesicles
Extracellular vesicles (EVs) are important mediators in the intercellular communication, influencing the function and phenotype of different cell types within the tumor micro-milieu and thus promote tumor progression. Since EVs safely transport packages of proteins, lipids and also nucleic acids such as miRNAs, EVs and their cargo can serve as diagnostic and prognostic markers. Therefore, the aim of this study was to investigate EV embedded miRNAs specific for melanoma, which could serve as potential biomarkers. In contrast to previous studies, we not only analysed miRNAs from EVs, but also included the miRNA profiles from the EV-secreting cells to identify candidates as suitable biomarkers. While the characterization of EVs derived from normal melanocytes and melanoma cells showed largely comparable properties with regard to size distribution and expression of protein markers, the NGS analyses yielded marked differences for several miRNAs. While miRNA load of EVs derived from normal human epidermal melanocytes (NHEMs) and melanoma cells were very similar, they were highly different from their secreting cells. By comprehensive analyses, six miRNAs were identified to be enriched in both melanoma cells and melanoma cell-derived EVs. Of those, the accumulation of miR-92b-3p, miR-182-5p and miR-183-5p in EVs could be validated in vitro. By functional network generation and pathway enrichment analysis we revealed an association with different tumor entities and signaling pathways contributing melanoma progression. Furthermore, we found that miR-92b-3p, miR-182-5p and miR-183-5p were also enriched in EVs derived from serum of melanoma patients. Our results support the hypothesis that miRNAs derived from EVs can serve as prognostic or diagnostic liquid biopsy markers in melanoma. We identified EV-derived miRNAs and showed that those miRNAs, which were enriched in melanoma cells and EVs, are also found elevated in serum-derived EVs of patients with metastatic melanoma, but not in healthy subjects.</jats:p
Comprehensive analyses of miRNAs revealed miR-92b-3p, miR-182-5p and miR-183-5p as potential novel biomarkers in melanoma-derived extracellular vesicles
Extracellular vesicles (EVs) are important mediators in the intercellular communication, influencing the function and phenotype of different cell types within the tumor micro-milieu and thus promote tumor progression. Since EVs safely transport packages of proteins, lipids and also nucleic acids such as miRNAs, EVs and their cargo can serve as diagnostic and prognostic markers. Therefore, the aim of this study was to investigate EV embedded miRNAs specific for melanoma, which could serve as potential biomarkers. In contrast to previous studies, we not only analysed miRNAs from EVs, but also included the miRNA profiles from the EV-secreting cells to identify candidates as suitable biomarkers. While the characterization of EVs derived from normal melanocytes and melanoma cells showed largely comparable properties with regard to size distribution and expression of protein markers, the NGS analyses yielded marked differences for several miRNAs. While miRNA load of EVs derived from normal human epidermal melanocytes (NHEMs) and melanoma cells were very similar, they were highly different from their secreting cells. By comprehensive analyses, six miRNAs were identified to be enriched in both melanoma cells and melanoma cell-derived EVs. Of those, the accumulation of miR-92b-3p, miR-182-5p and miR-183-5p in EVs could be validated in vitro. By functional network generation and pathway enrichment analysis we revealed an association with different tumor entities and signaling pathways contributing melanoma progression. Furthermore, we found that miR-92b-3p, miR-182-5p and miR-183-5p were also enriched in EVs derived from serum of melanoma patients. Our results support the hypothesis that miRNAs derived from EVs can serve as prognostic or diagnostic liquid biopsy markers in melanoma. We identified EV-derived miRNAs and showed that those miRNAs, which were enriched in melanoma cells and EVs, are also found elevated in serum-derived EVs of patients with metastatic melanoma, but not in healthy subjects
Evaluation of digital image analysis as a supportive tool for the stratification of head and neck vascular anomalies
Abstract
Background
The histological differentiation of individual types of vascular anomalies (VA), such as lymphatic malformations (LM), hemangioma (Hem), paraganglioma (PG), venous malformations (VeM), arteriovenous malformations (AVM), pyogenic granulomas (GP), and (not otherwise classified) vascular malformations (VM n.o.c.) is frequently difficult due to the heterogeneity of these anomalies. The aim of the study was to evaluate digital image analysis as a method for VA stratification
Methods
A total of 40 VA tissues were examined immunohistologically using a selection of five vascular endothelial-associated markers (CD31, CD34, CLDN5, PDPN, VIM). The staining results were documented microscopically followed by digital image analyses based quantification of the candidate-marker-proteins using the open source program ImageJ/Fiji.
Results
Differences in the expression patterns of the candidate proteins could be detected particularly when deploying the quotient of the quantified immunohistochemical signal values. Deploying signal marker quotients, LM could be fully distinguished from all other tested tissue types. GP achieved stratification from LM, Hem, VM, PG and AVM tissues, whereas Hem, PG, VM and AVM exhibited significantly different signal marker quotients compared with LM and GP tissues.
Conclusion
Although stratification of different VA from each other was only achieved in part with the markers used, the results of this study strongly support the usefulness of digital image analysis for the stratification of VA. Against the background of upcoming new diagnostic techniques involving artificial intelligence and deep (machine) learning, our data serve as a paradigm of how digital evaluation methods can be deployed to support diagnostic decision making in the field of VAs.
</jats:sec
Evaluation of digital image analysis as a supportive tool for the stratification of head and neck vascular anomalies
Background!#!The histological differentiation of individual types of vascular anomalies (VA), such as lymphatic malformations (LM), hemangioma (Hem), paraganglioma (PG), venous malformations (VeM), arteriovenous malformations (AVM), pyogenic granulomas (GP), and (not otherwise classified) vascular malformations (VM n.o.c.) is frequently difficult due to the heterogeneity of these anomalies. The aim of the study was to evaluate digital image analysis as a method for VA stratification METHODS: A total of 40 VA tissues were examined immunohistologically using a selection of five vascular endothelial-associated markers (CD31, CD34, CLDN5, PDPN, VIM). The staining results were documented microscopically followed by digital image analyses based quantification of the candidate-marker-proteins using the open source program ImageJ/Fiji.!##!Results!#!Differences in the expression patterns of the candidate proteins could be detected particularly when deploying the quotient of the quantified immunohistochemical signal values. Deploying signal marker quotients, LM could be fully distinguished from all other tested tissue types. GP achieved stratification from LM, Hem, VM, PG and AVM tissues, whereas Hem, PG, VM and AVM exhibited significantly different signal marker quotients compared with LM and GP tissues.!##!Conclusion!#!Although stratification of different VA from each other was only achieved in part with the markers used, the results of this study strongly support the usefulness of digital image analysis for the stratification of VA. Against the background of upcoming new diagnostic techniques involving artificial intelligence and deep (machine) learning, our data serve as a paradigm of how digital evaluation methods can be deployed to support diagnostic decision making in the field of VAs
Image_2_Comprehensive Analyses of miRNAs Revealed miR-92b-3p, miR-182-5p and miR-183-5p as Potential Novel Biomarkers in Melanoma-Derived Extracellular Vesicles.tif
Extracellular vesicles (EVs) are important mediators in the intercellular communication, influencing the function and phenotype of different cell types within the tumor micro-milieu and thus promote tumor progression. Since EVs safely transport packages of proteins, lipids and also nucleic acids such as miRNAs, EVs and their cargo can serve as diagnostic and prognostic markers. Therefore, the aim of this study was to investigate EV embedded miRNAs specific for melanoma, which could serve as potential biomarkers. In contrast to previous studies, we not only analysed miRNAs from EVs, but also included the miRNA profiles from the EV-secreting cells to identify candidates as suitable biomarkers. While the characterization of EVs derived from normal melanocytes and melanoma cells showed largely comparable properties with regard to size distribution and expression of protein markers, the NGS analyses yielded marked differences for several miRNAs. While miRNA load of EVs derived from normal human epidermal melanocytes (NHEMs) and melanoma cells were very similar, they were highly different from their secreting cells. By comprehensive analyses, six miRNAs were identified to be enriched in both melanoma cells and melanoma cell-derived EVs. Of those, the accumulation of miR-92b-3p, miR-182-5p and miR-183-5p in EVs could be validated in vitro. By functional network generation and pathway enrichment analysis we revealed an association with different tumor entities and signaling pathways contributing melanoma progression. Furthermore, we found that miR-92b-3p, miR-182-5p and miR-183-5p were also enriched in EVs derived from serum of melanoma patients. Our results support the hypothesis that miRNAs derived from EVs can serve as prognostic or diagnostic liquid biopsy markers in melanoma. We identified EV-derived miRNAs and showed that those miRNAs, which were enriched in melanoma cells and EVs, are also found elevated in serum-derived EVs of patients with metastatic melanoma, but not in healthy subjects.</p
Image_1_Comprehensive Analyses of miRNAs Revealed miR-92b-3p, miR-182-5p and miR-183-5p as Potential Novel Biomarkers in Melanoma-Derived Extracellular Vesicles.tif
Extracellular vesicles (EVs) are important mediators in the intercellular communication, influencing the function and phenotype of different cell types within the tumor micro-milieu and thus promote tumor progression. Since EVs safely transport packages of proteins, lipids and also nucleic acids such as miRNAs, EVs and their cargo can serve as diagnostic and prognostic markers. Therefore, the aim of this study was to investigate EV embedded miRNAs specific for melanoma, which could serve as potential biomarkers. In contrast to previous studies, we not only analysed miRNAs from EVs, but also included the miRNA profiles from the EV-secreting cells to identify candidates as suitable biomarkers. While the characterization of EVs derived from normal melanocytes and melanoma cells showed largely comparable properties with regard to size distribution and expression of protein markers, the NGS analyses yielded marked differences for several miRNAs. While miRNA load of EVs derived from normal human epidermal melanocytes (NHEMs) and melanoma cells were very similar, they were highly different from their secreting cells. By comprehensive analyses, six miRNAs were identified to be enriched in both melanoma cells and melanoma cell-derived EVs. Of those, the accumulation of miR-92b-3p, miR-182-5p and miR-183-5p in EVs could be validated in vitro. By functional network generation and pathway enrichment analysis we revealed an association with different tumor entities and signaling pathways contributing melanoma progression. Furthermore, we found that miR-92b-3p, miR-182-5p and miR-183-5p were also enriched in EVs derived from serum of melanoma patients. Our results support the hypothesis that miRNAs derived from EVs can serve as prognostic or diagnostic liquid biopsy markers in melanoma. We identified EV-derived miRNAs and showed that those miRNAs, which were enriched in melanoma cells and EVs, are also found elevated in serum-derived EVs of patients with metastatic melanoma, but not in healthy subjects.</p
Table_1_Comprehensive Analyses of miRNAs Revealed miR-92b-3p, miR-182-5p and miR-183-5p as Potential Novel Biomarkers in Melanoma-Derived Extracellular Vesicles.docx
Extracellular vesicles (EVs) are important mediators in the intercellular communication, influencing the function and phenotype of different cell types within the tumor micro-milieu and thus promote tumor progression. Since EVs safely transport packages of proteins, lipids and also nucleic acids such as miRNAs, EVs and their cargo can serve as diagnostic and prognostic markers. Therefore, the aim of this study was to investigate EV embedded miRNAs specific for melanoma, which could serve as potential biomarkers. In contrast to previous studies, we not only analysed miRNAs from EVs, but also included the miRNA profiles from the EV-secreting cells to identify candidates as suitable biomarkers. While the characterization of EVs derived from normal melanocytes and melanoma cells showed largely comparable properties with regard to size distribution and expression of protein markers, the NGS analyses yielded marked differences for several miRNAs. While miRNA load of EVs derived from normal human epidermal melanocytes (NHEMs) and melanoma cells were very similar, they were highly different from their secreting cells. By comprehensive analyses, six miRNAs were identified to be enriched in both melanoma cells and melanoma cell-derived EVs. Of those, the accumulation of miR-92b-3p, miR-182-5p and miR-183-5p in EVs could be validated in vitro. By functional network generation and pathway enrichment analysis we revealed an association with different tumor entities and signaling pathways contributing melanoma progression. Furthermore, we found that miR-92b-3p, miR-182-5p and miR-183-5p were also enriched in EVs derived from serum of melanoma patients. Our results support the hypothesis that miRNAs derived from EVs can serve as prognostic or diagnostic liquid biopsy markers in melanoma. We identified EV-derived miRNAs and showed that those miRNAs, which were enriched in melanoma cells and EVs, are also found elevated in serum-derived EVs of patients with metastatic melanoma, but not in healthy subjects.</p
