11 research outputs found

    EuroSolar Association

    Get PDF

    Combination of Proton Therapy and Radionuclide Therapy in Mice: Preclinical Pilot Study at the Paul Scherrer Institute.

    Get PDF
    Proton therapy (PT) is a treatment with high dose conformality that delivers a highly-focused radiation dose to solid tumors. Targeted radionuclide therapy (TRT), on the other hand, is a systemic radiation therapy, which makes use of intravenously-applied radioconjugates. In this project, it was aimed to perform an initial dose-searching study for the combination of these treatment modalities in a preclinical setting. Therapy studies were performed with xenograft mouse models of folate receptor (FR)-positive KB and prostate-specific membrane antigen (PSMA)-positive PC-3 PIP tumors, respectively. PT and TRT using 177Lu-folate and 177Lu-PSMA-617, respectively, were applied either as single treatments or in combination. Monitoring of the mice over nine weeks revealed a similar tumor growth delay after PT and TRT, respectively, when equal tumor doses were delivered either by protons or by β¯-particles, respectively. Combining the methodologies to provide half-dose by either therapy approach resulted in equal (PC-3 PIP tumor model) or even slightly better therapy outcomes (KB tumor model). In separate experiments, preclinical positron emission tomography (PET) was performed to investigate tissue activation after proton irradiation of the tumor. The high-precision radiation delivery of PT was confirmed by the resulting PET images that accurately visualized the irradiated tumor tissue. In this study, the combination of PT and TRT resulted in an additive effect or a trend of synergistic effects, depending on the type of tumor xenograft. This study laid the foundation for future research regarding therapy options in the situation of metastasized solid tumors, where surgery or PT alone are not a solution but may profit from combination with systemic radiation therapy

    The phenotypic and genetic signatures of common musculoskeletal pain conditions

    No full text
    Musculoskeletal pain conditions, such as fibromyalgia and low back pain, tend to coexist in affected individuals and are characterized by a report of pain greater than expected based on the results of a standard physical evaluation. The pathophysiology of these conditions is largely unknown, we lack biological markers for accurate diagnosis, and conventional therapeutics have limited effectiveness. Growing evidence suggests that chronic pain conditions are associated with both physical and psychological triggers, which initiate pain amplification and psychological distress; thus, susceptibility is dictated by complex interactions between genetic and environmental factors. Herein, we review phenotypic and genetic markers of common musculoskeletal pain conditions, selected based on their association with musculoskeletal pain in previous research. The phenotypic markers of greatest interest include measures of pain amplification and ‘psychological’ measures (such as emotional distress, somatic awareness, psychosocial stress and catastrophizing). Genetic polymorphisms reproducibly linked with musculoskeletal pain are found in genes contributing to serotonergic and adrenergic pathways. Elucidation of the biological mechanisms by which these markers contribute to the perception of pain in these patients will enable the development of novel effective drugs and methodologies that permit better diagnoses and approaches to personalized medicine
    corecore