3,423 research outputs found

    The influence of grain growth in circumstellar dust envelopes on observed colors and polarization of some eruptive stars

    Get PDF
    R CrB stars are classical examples of stars where dust envelope formation takes place. Dust envelope formation was detected around the Kuwano-Honda object (PU Vul) in 1980 to 1981 when the star's brightness fell to 8(sup m). Such envelopes are also formed at nova outbursts. The process of dust envelope formation leads to appreciable variations in optical characteristics, which are seen in specific color and polarization variations in the course of light fading and the appearance of IR radiation. It is shown that the model of a circumstellar dust envelope with aligned particles of changing size can be successfully applied to explain most phenomena observed at the time of light minima for a number of eruptive stars. The polarization may arise in a nonspherical dust envelope or be produced by alignment of nonspherical particles

    The few-body problem for trapped bosons with large scattering length

    Full text link
    We calculate energy levels of two and three bosons trapped in a harmonic oscillator potential with oscillator length aosca_{\mathrm osc}. The atoms are assumed to interact through a short-range potential with a scattering length aa, and the short-distance behavior of the three-body wave function is characterized by a parameter θ\theta. For large positive a/aosca/a_{\mathrm osc}, the energies of states which, in the absence of the trap, correspond to three free atoms approach values independent of aa and θ\theta. For other states the θ\theta dependence of the energy is strong, but the energy is independent of aa for ∣a/aosc∣≫1|a/a_{\mathrm osc}|\gg1.Comment: 4 pages, 3 figure

    Mass Dependence of Ultracold Three-Body Collision Rates

    Full text link
    We show that many aspects of ultracold three-body collisions can be controlled by choosing the mass ratio between the collision partners. In the ultracold regime, the scattering length dependence of the three-body rates can be substantially modified from the equal mass results. We demonstrate that the only non-trivial mass dependence is due solely to Efimov physics. We have determined the mass dependence of the three-body collision rates for all heteronuclear systems relevant for two-component atomic gases with resonant s-wave interspecies interactions, which includes only three-body systems with two identical bosons or two identical fermions

    Single-Particle Momentum Distribution of an Efimov trimer

    Full text link
    Experimental progress in the study of strongly interacting ultracold atoms has recently allowed the observation of Efimov trimers. We study theoretically a non-conventional observable for these trimer states, that may be accessed experimentally, the momentum distribution n(k) of the constitutive bosonic particles. The large momentum part of the distribution is particularly intriguing: In addition to the expected 1/k^4 tail associated to contact interactions, it exhibits a subleading tail 1/k^5 which is a hall-mark of Efimov physics and leads to a breakdown of a previously proposed expression of the energy as a functional of the momentum distribution.Comment: This is a subpart of the (too long to be published) work arXiv:1001.0774. This subpart has 11 pages and 2 figures. Revised version correcting minor error

    Three-boson problem near a narrow Feshbach resonance

    Full text link
    We consider a three-boson system with resonant binary interactions and show that three-body observables depend only on the resonance width and the scattering length. The effect of narrow resonances is qualitatively different from that of wide resonances revealing novel physics of three-body collisions. We calculate the rate of three-body recombination to a weakly bound level and the atom-dimer scattering length and discuss implications for experiments on Bose-Einstein condensates and atom-molecule mixtures near Feshbach resonances.Comment: published versio

    When a DNA Triple helix melts: An analog of the Efimov state

    Get PDF
    The base sequences of DNA contain the genetic code and to decode it a double helical DNA has to open its base pairs. Recent studies have shown that one can use a third strand to identify the base sequences without opening the double helix but by forming a triple helix. It is predicted here that such a three chain system exhibits the unusual behaviour of the existence of a three chain bound state in the absence of any two being bound. This phenomenon is analogous to the Efimov state in three particle quantum mechanics. A scaling theory is used to justify the Efimov connection. Real space renormalization group (RG), and exact numerical calculations are used to validate the prediction of a biological Efimov effect.Comment: Replaced by the (almost) published version, except the word "curiouser

    (Anti-)self-dual homogeneous vacuum gluon field as an origin of confinement and SUL(NF)×SUR(NF)SU_L(N_F)\times SU_R(N_F) symmetry breaking in QCD

    Full text link
    It is shown that an (anti-)self-dual homogeneous vacuum gluon field appears in a natural way within the problem of calculation of the QCD partition function in the form of Euclidean functional integral with periodic boundary conditions. There is no violation of cluster property within this formulation, nor are parity, color and rotational symmetries broken explicitly. The massless limit of the product of the quark masses and condensates, mf⟨ψˉfψf⟩m_f \langle \bar\psi_f \psi_f \rangle, is calculated to all loop orders. This quantity does not vanish and is proportional to the gluon condensate appearing due to the nonzero strength of the vacuum gluon field. We conclude that the gluon condensate can be considered as an order parameter both for confinement and chiral symmetry breaking.Comment: 16 pages, LaTe

    Exact relations for quantum-mechanical few-body and many-body problems with short-range interactions in two and three dimensions

    Get PDF
    We derive relations between various observables for N particles with zero-range or short-range interactions, in continuous space or on a lattice, in two or three dimensions, in an arbitrary external potential. Some of our results generalise known relations between large-momentum behavior of the momentum distribution, short-distance behavior of the pair correlation function and of the one-body density matrix, derivative of the energy with respect to the scattering length or to time, and the norm of the regular part of the wavefunction; in the case of finite-range interactions, the interaction energy is also related to dE/da. The expression relating the energy to a functional of the momentum distribution is also generalised, and is found to break down for Efimov states with zero-range interactions, due to a subleading oscillating tail in the momentum distribution. We also obtain new expressions for the derivative of the energy of a universal state with respect to the effective range, the derivative of the energy of an efimovian state with respect to the three-body parameter, and the second order derivative of the energy with respect to the inverse (or the logarithm in the two-dimensional case) of the scattering length. The latter is negative at fixed entropy. We use exact relations to compute corrections to exactly solvable three-body problems and find agreement with available numerics. For the unitary gas, we compare exact relations to existing fixed-node Monte-Carlo data, and we test, with existing Quantum Monte Carlo results on different finite range models, our prediction that the leading deviation of the critical temperature from its zero range value is linear in the interaction effective range r_e with a model independent numerical coefficient.Comment: 51 pages, 5 figures. Split into three articles: Phys. Rev. A 83, 063614 (2011) [arXiv:1103.5157]; Phys. Rev. A 86, 013626 (2012) [arXiv:1204.3204]; Phys. Rev. A 86, 053633 (2012) [ arXiv:1210.1784

    Effective Field Theory Program for Conformal Quantum Anomalies

    Full text link
    The emergence of conformal states is established for any problem involving a domain of scales where the long-range, SO(2,1) conformally invariant interaction is applicable. Whenever a clear-cut separation of ultraviolet and infrared cutoffs is in place, this renormalization mechanism produces binding in the strong-coupling regime. A realization of this phenomenon, in the form of dipole-bound anions, is discussed.Comment: 15 pages. Expanded, with additional calculational details. To be published in Phys. Rev.
    • …
    corecore