73 research outputs found
Roy Walford and the immunologic theory of aging
Roy Walford died on April 27, 2004, at the age of 79. His contributions to gerontological research in such diverse areas as caloric restriction, genetics of lifespan, immunosenescence, DNA repair and replicative senescence were truly remarkable in their depth and innovation. Significantly, most of the areas that he pioneered during his illustrious research career remain the "hot" areas of current gerontological research. In this sense, he has achieved the most important type of immortality. His death was a major personal and professional loss to numerous scientists within the gerontological community. In launching this new journal on Immunity and Ageing, it is highly fitting, therefore, to remember him on the anniversary of his death by briefly reviewing the contributions of Roy Walford to this important facet of gerontology. Indeed, it was Roy who actually first coined the commonly used term "immunosenescence"
Prostaglandin E2 promotes features of replicative senescence in chronically activated human CD8+ T cells.
Prostaglandin E2 (PGE2), a pleiotropic immunomodulatory molecule, and its free radical catalyzed isoform, iso-PGE2, are frequently elevated in the context of cancer and chronic infection. Previous studies have documented the effects of PGE2 on the various CD4+ T cell functions, but little is known about its impact on cytotoxic CD8+ T lymphocytes, the immune cells responsible for eliminating virally infected and tumor cells. Here we provide the first demonstration of the dramatic effects of PGE2 on the progression of human CD8+ T cells toward replicative senescence, a terminal dysfunctional state associated multiple pathologies during aging and chronic HIV-1 infection. Our data show that exposure of chronically activated CD8+ T cells to physiological levels of PGE2 and iso-PGE2 promotes accelerated acquisition of markers of senescence, including loss of CD28 expression, increased expression of p16 cell cycle inhibitor, reduced telomerase activity, telomere shortening and diminished production of key cytotoxic and survival cytokines. Moreover, the CD8+ T cells also produced higher levels of reactive oxygen species, suggesting that the resultant oxidative stress may have further enhanced telomere loss. Interestingly, we observed that even chronic activation per se resulted in increased CD8+ T cell production of PGE2, mediated by higher COX-2 activity, thus inducing a negative feedback loop that further inhibits effector function. Collectively, our data suggest that the elevated levels of PGE2 and iso-PGE2, seen in various cancers and HIV-1 infection, may accelerate progression of CD8+ T cells towards replicative senescence in vivo. Inhibition of COX-2 activity may, therefore, provide a strategy to counteract this effect
Decreased perforin and granzyme B expression in senescent HIV-1-specific cytotoxic T lymphocytes
AbstractCytotoxic T lymphocyte (CTL) senescence may be an important mechanism of immune failure in HIV-1 infection. We find that senescence of HIV-1-specific CTL clones causes loss of killing activity, preventable by transduction with telomerase. Furthermore, senescence is associated with reduced expression of the effector molecules granzyme and perforin, suggesting CTL “exhaustion” can result in hypofunction. These results agree with other studies showing that HIV-1-specific CTL exhibit abnormal phenotypes in vivo, and suggest the possibility that chronic turnover is an important mechanism of antiviral failure in HIV-1 infection
Sustained CD28 Expression Delays Multiple Features of Replicative Senescence in Human CD8 T Lymphocytes
CD28 costimulatory signal transduction in T lymphocytes is essential for optimal telomerase activity, stabilization of cytokine mRNAs, and glucose metabolism. During aging and chronic infection with HIV-1, there are increased proportions of CD8 T lymphocytes that lack CD28 expression and show additional features of replicative senescence. Moreover, the abundance of these cells correlates with decreased vaccine responsiveness, early mortality in the very old, and accelerated HIV disease progression. Here, we show that sustained expression of CD28, via gene transduction, retards the process of replicative senescence, as evidenced by enhanced telomerase activity, increased overall proliferative potential, and reduced secretion of pro-inflammatory cytokines. Nevertheless, the transduced cultures eventually do reach senescence, which is associated with increased CTLA-4 gene expression and a loss of CD28 cell surface expression. These findings further elucidate the central role of CD28 in the replicative senescence program, and may ultimately lead to novel therapies for diseases associated with replicative senescence
The Dual Impact of HIV-1 Infection and Aging on Naïve CD4+ T-Cells: Additive and Distinct Patterns of Impairment
HIV-1-infected adults over the age of 50 years progress to AIDS more rapidly than adults in their twenties or thirties. In addition, HIV-1-infected individuals receiving antiretroviral therapy (ART) present with clinical diseases, such as various cancers and liver disease, more commonly seen in older uninfected adults. These observations suggest that HIV-1 infection in older persons can have detrimental immunological effects that are not completely reversed by ART. As naïve T-cells are critically important in responses to neoantigens, we first analyzed two subsets (CD45RA+CD31+ and CD45RA+CD31-) within the naïve CD4+ T-cell compartment in young (20–32 years old) and older (39–58 years old), ART-naïve, HIV-1 seropositive individuals within 1–3 years of infection and in age-matched seronegative controls. HIV-1 infection in the young cohort was associated with lower absolute numbers of, and shorter telomere lengths within, both CD45RA+CD31+CD4+ and CD45RA+CD31-CD4+ T-cell subsets in comparison to age-matched seronegative controls, changes that resembled seronegative individuals who were decades older. Longitudinal analysis provided evidence of thymic emigration and reconstitution of CD45RA+CD31+CD4+ T-cells two years post-ART, but minimal reconstitution of the CD45RA+CD31-CD4+ subset, which could impair de novo immune responses. For both ART-naïve and ART-treated HIV-1-infected adults, a renewable pool of thymic emigrants is necessary to maintain CD4+ T-cell homeostasis. Overall, these results offer a partial explanation both for the faster disease progression of older adults and the observation that viral responders to ART present with clinical diseases associated with older adults
The silent war of CMV in aging and HIV infection
Human cytomegalovirus (CMV), the prototypical β-herpervirus, is a widespread pathogen that establishes a lifelong latent infection in myeloid progenitor, and possibly other cells as well. Although immunocompetent individuals show mild or no symptoms despite periodic reactivation during myeloid cell differentiation, CMV is responsible for considerable morbidity and mortality in older adults and in persons chronically infected with HIV. Indeed, in these individuals, reactivation of CMV can cause serious complications. This review will focus of the effects of CMV during aging and HIV/AIDS, with particular attention to the cellular immunity and age-related pathology outcomes from this persistent infection. The impact of the long-term chronic exposure to CMV antigens on the expansion of CD8 T cells with features of replicative senescence will be highlighted
Recommended from our members
Roy Walford and the immunologic theory of aging.
Roy Walford died on April 27, 2004, at the age of 79. His contributions to gerontological research in such diverse areas as caloric restriction, genetics of lifespan, immunosenescence, DNA repair and replicative senescence were truly remarkable in their depth and innovation. Significantly, most of the areas that he pioneered during his illustrious research career remain the "hot" areas of current gerontological research. In this sense, he has achieved the most important type of immortality. His death was a major personal and professional loss to numerous scientists within the gerontological community. In launching this new journal on Immunity and Ageing, it is highly fitting, therefore, to remember him on the anniversary of his death by briefly reviewing the contributions of Roy Walford to this important facet of gerontology. Indeed, it was Roy who actually first coined the commonly used term "immunosenescence"
- …