1,679 research outputs found

    Hierarchically Clustered Adaptive Quantization CMAC and Its Learning Convergence

    Get PDF
    No abstract availabl

    Design and Implementation of an RNS-based 2D DWT Processor

    Get PDF
    No abstract availabl

    Gaussian Process Model Predictive Control of An Unmanned Quadrotor

    Full text link
    The Model Predictive Control (MPC) trajectory tracking problem of an unmanned quadrotor with input and output constraints is addressed. In this article, the dynamic models of the quadrotor are obtained purely from operational data in the form of probabilistic Gaussian Process (GP) models. This is different from conventional models obtained through Newtonian analysis. A hierarchical control scheme is used to handle the trajectory tracking problem with the translational subsystem in the outer loop and the rotational subsystem in the inner loop. Constrained GP based MPC are formulated separately for both subsystems. The resulting MPC problems are typically nonlinear and non-convex. We derived 15 a GP based local dynamical model that allows these optimization problems to be relaxed to convex ones which can be efficiently solved with a simple active-set algorithm. The performance of the proposed approach is compared with an existing unconstrained Nonlinear Model Predictive Control (NMPC). Simulation results show that the two approaches exhibit similar trajectory tracking performance. However, our approach has the advantage of incorporating constraints on the control inputs. In addition, our approach only requires 20% of the computational time for NMPC.Comment: arXiv admin note: text overlap with arXiv:1612.0121

    Improved Memoryless RNS Forward Converter Based on the Periodicity of Residues

    Get PDF
    The residue number system (RNS) is suitable for DSP architectures because of its ability to perform fast carry-free arithmetic. However, this advantage is over-shadowed by the complexity involved in the conversion of numbers between binary and RNS representations. Although the reverse conversion (RNS to binary) is more complex, the forward transformation is not simple either. Most forward converters make use of look-up tables (memory). Recently, a memoryless forward converter architecture for arbitrary moduli sets was proposed by Premkumar in 2002. In this paper, we present an extension to that architecture which results in 44% less hardware for parallel conversion and achieves 43% improvement in speed for serial conversions. It makes use of the periodicity properties of residues obtained using modular exponentiation

    A Linear Network Code Construction for General Integer Connections Based on the Constraint Satisfaction Problem

    Get PDF
    The problem of finding network codes for general connections is inherently difficult in capacity constrained networks. Resource minimization for general connections with network coding is further complicated. Existing methods for identifying solutions mainly rely on highly restricted classes of network codes, and are almost all centralized. In this paper, we introduce linear network mixing coefficients for code constructions of general connections that generalize random linear network coding (RLNC) for multicast connections. For such code constructions, we pose the problem of cost minimization for the subgraph involved in the coding solution and relate this minimization to a path-based Constraint Satisfaction Problem (CSP) and an edge-based CSP. While CSPs are NP-complete in general, we present a path-based probabilistic distributed algorithm and an edge-based probabilistic distributed algorithm with almost sure convergence in finite time by applying Communication Free Learning (CFL). Our approach allows fairly general coding across flows, guarantees no greater cost than routing, and shows a possible distributed implementation. Numerical results illustrate the performance improvement of our approach over existing methods.Comment: submitted to TON (conference version published at IEEE GLOBECOM 2015

    Cardiovascular Risk in Patients with Psoriatic Arthritis

    Get PDF
    Psoriatic arthritis (PsA) is an inflammatory arthritis associated with psoriasis. In addition to skin and joint involvement, there is increasing evidence suggesting that patients with PsA also have an increase in risk of clinical and subclinical cardiovascular diseases, mostly due to accelerating atherosclerosis. Both conventional and nonconventional cardiovascular risk factors contribute to the increased cardiovascular risk in PsA. Chronic inflammation plays a pivotal role in the pathogenesis of atherosclerosis in PsA, acting independently and/or synergistically with the conventional risk factors. In this paper, we discuss the current literature indicating that patients with PsA are at risk of cardiovascular diseases
    corecore