139 research outputs found

    The role of platelet microvesicles in intercellular communication.

    Get PDF
    In recent years, there has been exponential growth in the interest in microvesicles, which is reflected by the number of publications. Initially referred to as platelet dust by Peter Wolf in 1967, platelet microvesicles (PMV) are now recognized as important mediators of intercellular communication. There are examples of PMV exerting physiological effects on almost all hematological and vascular cell types, including monocytes, macrophages, neutrophils, T-cells, endothelium cells, and smooth muscle cells (SMCs). PMV can exert these effects by multiple methods: extracellular signaling through receptors, transfer of surface molecules, and delivery of intracellular contents including miRNA. Recent work suggests a complex environment in which cellular contents are being shared multi-directionally between multiple cell types. This review will focus on the communicative properties of PMV

    Identification of a functional genetic variant driving racially dimorphic platelet gene expression of the thrombin receptor regulator, PCTP.

    Get PDF
    Platelet activation in response to stimulation of the Protease Activated Receptor 4 (PAR4) receptor differs by race. One factor that contributes to this difference is the expression level of Phosphatidylcholine Transfer Protein (PCTP), a regulator of platelet PAR4 function. We have conducted an expression Quantitative Trait Locus (eQTL) analysis that identifies single nucleotide polymorphisms (SNPs) linked to the expression level of platelet genes. This analysis revealed 26 SNPs associated with the expression level of PCTP at genome-wide significance (p \u3c 5×10(-8)). Using annotation from ENCODE and other public data we prioritised one of these SNPs, rs2912553, for functional testing. The allelic frequency of rs2912553 is racially-dimorphic, in concordance with the racially differential expression of PCTP. Reporter gene assays confirmed that the single nucleotide change caused by rs2912553 altered the transcriptional potency of the surrounding genomic locus. Electromobility shift assays, luciferase assays, and overexpression studies indicated a role for the megakaryocytic transcription factor GATA1. In summary, we have integrated multi-omic data to identify and functionalise an eQTL. This, along with the previously described relationship between PCTP and PAR4 function, allows us to characterise a genotype-phenotype relationship through the mechanism of gene expression

    Sickle Cell Disease and Variation in the PAR4 Receptor

    Get PDF
    Sickle cell disease disproportionately affects African Americans in the U.S. Much can still be learned regarding determinants of frequency and severity of painful vaso-occlusive episodes in these patients. It has been reported that a variant in PAR4 (protease-activated receptor 4) has a unique distribution among African Americans. One variant (Thr120) is hyperactive, while the other (Ala120) is hypoactive. This receptor is present on platelets, vascular cells, and nociceptors. We wish ultimately to test the hypothesis that sickle cell patients with the hyperactive PAR4 receptor have greater pain severity. A genotype-phenotype correlation would have prognostic value. An adequately powered study to test this hypothesis would need to be multicenter. Therefore this is an ongoing pilot feasibility study to 1) Determine whether a sufficient number of sickle cell patients will consent to a focused genotype study; 2) Test if the current electronic health record (EHR) can be queried for an accurate depiction of sickle cell-related pain treatment; and 3) Collect single-center data on the genotype-phenotype correlation that can later be expanded to a multi-center study. 7/18 patients asked have consented to be in the study, the EHR in 5/7 enrolled has matched self-reported healthcare visits for vaso-occlusive episodes, and genetic studies are not being conducted until there are adequate numbers of samples. These in-progress results indicate patients will consent at an acceptable frequency and that the EHR is useful in objectively categorizing pain-severity phenotypes. Regardless of the date from the genetic component, preliminary results suggest a multi-center study could be productive

    Bayesian modelling of high-throughput sequencing assays with malacoda.

    Get PDF
    NGS studies have uncovered an ever-growing catalog of human variation while leaving an enormous gap between observed variation and experimental characterization of variant function. High-throughput screens powered by NGS have greatly increased the rate of variant functionalization, but the development of comprehensive statistical methods to analyze screen data has lagged. In the massively parallel reporter assay (MPRA), short barcodes are counted by sequencing DNA libraries transfected into cells and the cell\u27s output RNA in order to simultaneously measure the shifts in transcription induced by thousands of genetic variants. These counts present many statistical challenges, including overdispersion, depth dependence, and uncertain DNA concentrations. So far, the statistical methods used have been rudimentary, employing transformations on count level data and disregarding experimental and technical structure while failing to quantify uncertainty in the statistical model. We have developed an extensive framework for the analysis of NGS functionalization screens available as an R package called malacoda (available from github.com/andrewGhazi/malacoda). Our software implements a probabilistic, fully Bayesian model of screen data. The model uses the negative binomial distribution with gamma priors to model sequencing counts while accounting for effects from input library preparation and sequencing depth. The method leverages the high-throughput nature of the assay to estimate the priors empirically. External annotations such as ENCODE data or DeepSea predictions can also be incorporated to obtain more informative priors-a transformative capability for data integration. The package also includes quality control and utility functions, including automated barcode counting and visualization methods. To validate our method, we analyzed several datasets using malacoda and alternative MPRA analysis methods. These data include experiments from the literature, simulated assays, and primary MPRA data. We also used luciferase assays to experimentally validate several hits from our primary data, as well as variants for which the various methods disagree and variants detectable only with the aid of external annotations

    The human platelet: strong transcriptome correlations among individuals associate weakly with the platelet proteome.

    Get PDF
    BACKGROUND: For the anucleate platelet it has been unclear how well platelet transcriptomes correlate among different donors or across different RNA profiling platforms, and what the transcriptomes\u27 relationship is with the platelet proteome. We profiled the platelet transcriptome of 10 healthy young males (5 white and 5 black) with no notable clinical history using RNA sequencing and by Affymetrix microarray. RESULTS: We found that the abundance of platelet mRNA transcripts was highly correlated across the 10 individuals, independently of race and of the employed technology. Our RNA-seq data showed that these high inter-individual correlations extend beyond mRNAs to several categories of non-coding RNAs. Pseudogenes represented a notable exception by exhibiting a difference in expression by race. Comparison of our mRNA signatures to a publicly available quantitative platelet proteome showed that most (87.5%) identified platelet proteins had a detectable corresponding mRNA. However, a high number of mRNAs that were present in the transcriptomes of all 10 individuals had no representation in the proteome. Spearman correlations of the relative abundances for those genes represented by both an mRNA and a protein showed a weak (~0.3) connection. Further analysis of the overlapping and non-overlapping platelet mRNAs and proteins identified gene groups corresponding to distinct cellular processes. CONCLUSIONS: The results of our analyses provide novel insights for platelet biology, show only a weak connection between the platelet transcriptome and proteome, and indicate that it is feasible to assemble a platelet mRNA-ome that can serve as a reference for future platelet transcriptomic studies of human health and disease. REVIEWED BY: This article was reviewed by Dr Mikhail Dozmorov (nominated by Dr Yuri Gusev), Dr Neil Smalheiser and Dr Eugene Koonin

    PCTP contributes to human platelet activation by enhancing dense granule secretion

    Get PDF
    PCTP (phosphatidylcholine transfer protein) was discovered recently to regulate aggregation of human platelets stimulated with PAR4 activating peptide (PAR4AP). However, the role of PCTP following thrombin stimulation, the mechanisms by which PCTP contributes to platelet activation, and the role of PCTP with other receptors remained unknown. As mouse platelets do not express PCTP, we treated human platelets with various agonists in the presence of the specific PCTP inhibitor A1. We observed that PCTP inhibition significantly reduced dense granule secretion in response to thrombin, PAR1AP, PAR4AP, convulxin (GPVI agonist) and FcγRIIA crosslinking. In contrast, among these agonists, PCTP inhibition reduced aggregation only to low dose thrombin and PAR4AP. Unlike its effects on dense granule secretion, PCTP inhibition did not reduce alpha granule secretion in response to thrombin or PAR4AP. PCTP inhibition reduced both the increase in cytoplasmic Ca2+ as well as PKC activity downstream of thrombin. These data are consistent with PCTP contributing to secretion of dense granules, and to being particularly important to human PAR4 early signaling events. Future studies will address further these molecular mechanisms and consequences for hemostasis and thrombosis

    The complex transcriptional landscape of the anucleate human platelet.

    Get PDF
    BACKGROUND: Human blood platelets are essential to maintaining normal hemostasis, and platelet dysfunction often causes bleeding or thrombosis. Estimates of genome-wide platelet RNA expression using microarrays have provided insights to the platelet transcriptome but were limited by the number of known transcripts. The goal of this effort was to deep-sequence RNA from leukocyte-depleted platelets to capture the complex profile of all expressed transcripts. RESULTS: From each of four healthy individuals we generated long RNA (≥40 nucleotides) profiles from total and ribosomal-RNA depleted RNA preparations, as well as short RNA (\u3c40 \u3enucleotides) profiles. Analysis of ~1 billion reads revealed that coding and non-coding platelet transcripts span a very wide dynamic range (≥16 PCR cycles beyond β-actin), a result we validated through qRT-PCR on many dozens of platelet messenger RNAs. Surprisingly, ribosomal-RNA depletion significantly and adversely affected estimates of the relative abundance of transcripts. Of the known protein-coding loci, ~9,500 are present in human platelets. We observed a strong correlation between mRNAs identified by RNA-seq and microarray for well-expressed mRNAs, but RNASeq identified many more transcripts of lower abundance and permitted discovery of novel transcripts. CONCLUSIONS: Our analyses revealed diverse classes of non-coding RNAs, including: pervasive antisense transcripts to protein-coding loci; numerous, previously unreported and abundant microRNAs; retrotransposons; and thousands of novel un-annotated long and short intronic transcripts, an intriguing finding considering the anucleate nature of platelets. The data are available through a local mirror of the UCSC genome browser and can be accessed at: http://cm.jefferson.edu/platelets_2012/

    Functionalization of CD36 Cardiovascular Disease and Expression Associated Variants by Interdisciplinary High Throughput Analysis.

    Get PDF
    CD36 is a platelet membrane glycoprotein whose engagement with oxidized low-density lipoprotein (oxLDL) results in platelet activation. The CD36 gene has been associated with platelet count, platelet volume, as well as lipid levels and CVD risk by genome-wide association studies. Platelet CD36 expression levels have been shown to be associated with both the platelet oxLDL response and an elevated risk of thrombo-embolism. Several genomic variants have been identified as associated with platelet CD36 levels, however none have been conclusively demonstrated to be causative. We screened 81 expression quantitative trait loci (eQTL) single nucleotide polymorphisms (SNPs) associated with platelet CD36 expression by a Massively Parallel Reporter Assay (MPRA) and analyzed the results with a novel Bayesian statistical method. Ten eQTLs located 13kb to 55kb upstream of the CD36 transcriptional start site of transcript ENST00000309881 and 49kb to 92kb upstream of transcript ENST00000447544, demonstrated significant transcription shifts between their minor and major allele in the MPRA assay. Of these, rs2366739 and rs1194196, separated by only 20bp, were confirmed by luciferase assay to alter transcriptional regulation. In addition, electromobility shift assays demonstrated differential DNA:protein complex formation between the two alleles of this locus. Furthermore, deletion of the genomic locus by CRISPR/Cas9 in K562 and Meg-01 cells results in upregulation of CD36 transcription. These data indicate that we have identified a variant that regulates expression of CD36, which in turn affects platelet function. To assess the clinical relevance of our findings we used the PhenoScanner tool, which aggregates large scale GWAS findings; the results reinforce the clinical relevance of our variants and the utility of the MPRA assay. The study demonstrates a generalizable paradigm for functional testing of genetic variants to inform mechanistic studies, support patient management and develop precision therapies
    • …
    corecore