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Abstract 

 In recent years there has been exponential growth in the interest in microvesicles, which is 

reflected by the number of publications.  Initially referred to as “platelet dust” by Peter Wolf in 1967, 

platelet microvesicles (PMV) are now recognized as important mediators of intercellular communication. 

There are examples of PMV exerting physiological effects on almost all hematological and vascular cell 

types, including monocytes, macrophages, neutrophils, T-cells, endothelium cells, and smooth muscle 

cells.  PMV can exert these effects by multiple methods: extracellular signaling through receptors, transfer 

of surface molecules, and delivery of intracellular contents including miRNA.  Recent work suggests a 

complex environment in which cellular contents are being shared muti-directionally between multiple cell 

types.  This review will focus on the communicative properties of PMV. 

  



Introduction 

 Extracellular vesicles (EVs) are membrane bound vesicles produced by almost every type of cell 

that resides in or contacts the blood.  Many investigators have become interested in EVs for several 

reasons: (1) Their quantity increases in many pathological conditions [1]; (2) They participate directly in 

physiological processes such as thrombin generation [2]; and (3) they serve as mediators of intercellular 

communication, directly affecting the biology of target cells or delivering bioactive molecules.  This review 

will focus on the role of platelet microvesicles (PMV), one of the most abundant circulating MV, in 

intercellular communication [3].  The review will cover advances in the understanding of how PMV interact 

with target cells in a variety of modes including lipid-mediated signaling, protein-mediated signaling, 

surface receptor transfer, cytosolic content transfer, and miRNA transfer.  In addition, the mechanisms by 

which PMV are produced and taken up by target cells is briefly summarized. 

Production of platelet microvesicles 

 Platelets produce PMV in response to a large number of stimuli.  Complement protein C5b-9, 

bacterial lipopolysaccharide, cold storage, and influenza virus H1N1 all have been reported to generate 

PMV from exposed platelets [4].  PMV formation is closely connected to the formation of surface 

phosphatidylserine (PS) positive, procoagulant platelets.  The connection between PS exposure and PMV 

formation was first observed in response to platelet stimulation with thrombin or collagen [5].  Since that 

report, many investigators have reported that dual stimulation with collagen and thrombin, or a single 

agonist combined with shear stress is required for maximal PMV production [6; 7].  While shear alone 

does not result in PMV generation, shear plus von Willebrand Factor (vWF) does [8]. The requirement for 

vWF for shear-generated PMV is supported by evidence that antibodies that block the vWF receptor, 

GIPbα, suppress PMV production [9].  PS exposure and PMV production have also been linked to 

elevated cytosolic Ca2+ levels and to the activation of the Ca2+ protease, calpain [6; 7; 10].  PS is normally 

located on the inner leaflet of the cellular membrane and exposure requires the action of “flippases” to 

transfer the PS to the outer membrane.  PS exposure leads to assembly of prothrombinase complexes on 

the surface of platelets.  A defect in platelet PS exposure leads to the bleeding disorder and defective 

PMV release in Scott syndrome patients.  TMEM16F, which is mutated in Scott syndrome patients, has 

been identified as the Ca2+-dependent flippase responsible for PS-exposure and PMV release [11].  Being 

that increased shear, as found at thrombosis sites, plays a role in PMV formation and that PS+ PMV can 

generate thrombin, it is a matter of debate whether PMV are a cause or result of thrombosis.  Perhaps 

PMV serve as a mechanism by which a thrombus is propagated and sustained.  In addition to the above 

processes, proteasome function, cytoskeletal rearrangement, protein tyrosine phosphatase activity and 

outside-in signaling through the platelet fibrin receptor have been implicated in PMV formation [4]. 

Content of platelet microvesicles 

 MV cellular origin is determined by surface markers inherited from the parental cell.  While 

platelet surface proteins such as CD41, CD42, and CD61 are typically used identify PMV, these markers 

are present on the platelet precursor, the megakaryocyte, which also produces MVs [8; 12].  Flaumenhaft 

and colleagues reported that a majority of MVs generated from platelets expressed CD62P and contained 

cleaved filamin A.  However most plasma CD41+ MVs did not expressed CD62P and contained both 

intact and cleaved filamin A.  These data suggest that a significant portion of circulating CD41+ MVs 

actually originate from megakaryocytes and not platelets [12]. 

PMV also contain a wide array of molecules including growth factors, coagulation factors, 

enzymes, adhesion molecules, chemokines, cytokines, complement proteins, apoptosis regulators, 

bioactive lipids, and miRNAs [1; 13].  PMV are more enriched in PS and P-selectin than the parental 

platelet, suggesting either an active process to select content or the occurence of MV budding in specific 

regions of the platelet membrane that are enriched for such factors [14].  There is evidence that under 



shear stress, platelets form flow induced protrusions (FLIPRs) from which PMV arise, supporting the 

hypothesis that PMV arise from specific regions of the platelet membrane [15].  PMV content can differ 

depending on the stimulus which generated them.  A recent proteomic analysis of PMV identified 3383 

proteins. The levels of these proteins were different depending on the agonist that produced the PMV 

[16].  In addition, PS content was found to be higher in Ca2+ ionophore A23187 induced PMV compared 

to thrombin-stimulated PMV, indicating stimulus-specific membrane composition [17]. 

Platelet microvesicles as intercellular communication mediators 

 PMV can interact with other cells in multiple ways:  both proteins and bioactive lipids on the 

surface of MV have been implicated in triggering receptors on target cells.  Fusion of MV and target cells 

can lead to the transfer of membrane integral proteins, adding new functions to the larger cell.  

Internalization and unpacking results in the delivery of cytosolic enzymes and miRNAs.  In addition, there 

has been several reports of MV effects on target cells in which the mode of interaction in not known.  

Table 1 summarizes the literature of interactions between PMV and target cells. 

Lipid-mediated signaling 

 One of the first descriptions of a mechanism by which PMV activate cells was by Garrett 

FitzGerald et al. They reported that arachidonic acid (AA) from PMV induced platelet aggregation and 

found the PMV AA was metabolized by the platelet into thromboxane A2 (TXA2).  PMV AA also induced 

COX-1 expression and prostacyclin PGI2 production [18].  The following year they reported that PMV AA 

stimulated an increase in intracellular adhesion molecule-1 (ICAM-1) expression in human umbilical vein 

endothelial cells (HUVECs).  This increase lead to enhanced monocyte:endothelial interactions.  PMV AA 

also caused an increase in lymphocyte function–associated antigen-1 (LFA-1) and macrophage antigen-1 

(Mac-1) in monocytes and the U-937 monocytic cell line.  These changes in surface antigens were 

accompanied by enhancement of chemotaxis in U-937 cells [19].  The mechanism for these effects was 

later reported to be dependent on the Protein Kinase C (PKC) and Mitogen Activated Protein Kinase 

(MAPK) pathways [20].  In contrast to this work, where AA is transferred from PMV to target cells and 

metabolized, Sandra Pfister reported that AA is transferred to PMV from rabbit pulmonary artery 

endothelial cells.  The AA was subsequently metabolized into TXB2
 in the PMV.  Differences in 

experimental approaches and endothelial subtypes may explain this disparity [21]. 

 Kim et al. have reported that treatment of HUVECs with PMV resulted in protection from 

apoptosis, enhanced proliferation, and agiogenesis, as measured by tube formation assays.  While heat 

treatment of the PMV prior to adding them to HUVECs had little result, charcoal treatment resulted in a 

significant reduction of these effects.  As charcoal treatment removes nonpolar lipids, the authors 

reasoned that a lipid component of PMV was responsible for stimulation of HUVECs [22].   

Extracellular protein mediated signaling 

 There have been several studies that describe the PMV-induced effects on cells that are 

mediated by signaling proteins.  While many of these proteins have been described as membrane-

associated, others are not, and it is not clear if these proteins are secreted from the PMV or tethered to 

the PMV membrane.  Brill et al. reported a pro-angiogentic effect of PMV treatment on rat arotic 

endothelial cells, which was dependent on the growth factors Vascular Endothelial Growth Factor 

(VEGF), basic Fibroblast Growth Factor (bFGF), and Platelet Derived Growth Factor (PDGF).  PMV 

VEGF and PDGF also caused endothelial migration in a matrigel assay.  This events were mediated via 

the Phosphoinositide 3-kinase (PI3K), Src, and Extracellular Regulated Kinase (ERK) pathways [23].  

PMV have also been reported to enhance monocyte arrest on endothelial cells.  This phenomenon was 

dependent on PMV deposition of the cytokine CCL5, also known as RANTES (Regulated on Activation, 

Normal T-cell Expressed and Secreted) onto activated endothelium [24]. 



 Eric Boilard et al. reported that PMV in synovial fluid from patients with rheumatoid arthritis 

increased production of inflammatory cytokines in fibroblast-like synoviocytes in an IL-1 dependent 

manner [25].  PMV influences on inflammatory signaling was also recently discovered by Bei et al.  They 

found that Staphylococcal superantigen-like protein 5-stimulated platelets produced PMV, which leads an 

increase interleukin 1β (IL-1β), Tumor Necrosis Factor α (TNFα), and Monocyte Chemoattractant Protein-

1 (MCP-1) in monocytes.  Neutralizing antibodies to CD40L caused a significant reduction in this 

phenomenon [26].  In contrast to the proinflammatory response described above, PMV may also have 

anti-inflammatory effects.  Exposure to PMV resulted in a decrease in interferon γ (IFNγ), TNFα, and IL-6 

secretion in CD4+ T-cells.  PMV further caused an increase in Transforming Growth Factor – β1 (TGF-β1) 

production and differentiation of naïve CD4+ T-cells to Foxp3+ regulatory T cells.  These effects were 

mediated by PMV TGF-β1 [27]. 

Receptor transfer 

 Another mode in which PMV interface with target cells is membrane fusion.  This results in the 

transfer of platelet surface proteins to the recipient cell, imparting new functions and immunological 

reactivity, potentially confounding identification and purification of cell types.  Ratajczak et al. have 

reported a series of observations regarding the transfer of platelet surface proteins to various cell types.  

They first published their findings that human CD34+ and mouse Sca-1+ hematopoetic stem express 

interact with PMV via P-selectin glycoprotein ligand-1 (PSGL-1), which binds with P-selectin on activated 

platelets and PMV.  This interaction resulted in the transfer of surface platelet proteins, such as CD41, 

CD61, CXCR4, and PAR-1. Electron microscopic analysis revealed a lack of intact platelets, suggesting a 

PMV-mediated effect.  This transfer resulted in improved adhesion of these stem cells to endothelium and 

engraftment after transplantation in a murine model [28].  They next found that CXCR4, CD41, and P-

selectin could be transferred to erythroblasts, myeloblasts, and monocytes [29].  Finally, they described 

how PMV delivery of CXCR4 to erythroblasts or UT-7 myeloid leukemia cells resulted in their ability to 

become infected by X4-trophic HIV [30]. 

 PMV-mediated delivery of CXCR4 has been implicated in other processes as well.  Transfer to 

angiogenic early outgrowth cells augmented pro-angiogenic properties including increased adhesion to 

the extracellular matrix and enhanced proliferation, migration and tube formation [31].  Finally, transfer of 

the platelet fibrinogen binding integrin, αIIbβ3, by PMV enabled NF-κB signaling in response to GM-CSF 

(Granulocyte Macrophage Colony-Stimulating Factor) in neutrophils, potentially enhancing inflammation 

[32]. 

PMV internalization 

 Membrane fusion between PMV and cells can result in the contents of the PMV being deposited 

into the cytosol of the recipient cell.  An early mechanistic description of MV:target cell fusion indicated 

that monocyte MV (MMV) bound to platelets via P-selectin:PSGL-1 interactions.  Blocking PS with 

Annexin V did not prevent MMV:platelet association, but did inhibit membrane fusion, indicating a PS-

dependent mechanism [33].  More recently, MV derived from hypoxia-induced mesenchymal stem cells 

(MSC-MV) have been reported to be internalized by HUVECs in a PS-dependent manner [34]. 

Gas6 is a secreted protein that binds to externalized PS on cells, which then serves as a ligand 

for the tyrosine kinase receptors Tyro3, Axl, and Mer (TAMs).  Happonen et al. have reported that PMV 

internalization by endothelial cells is mediated by interactions between Gas6 and tyrosine receptor kinase 

Axl [35].  Other lipid mediators have been implicated in the MV internalization process.  The catalytic 

activity of secreted phospholipase A2 group IIA (sPLA2-IIA) was found to be necessary for PMV 

internalization by neutrophils.  sPLA2-IIA can use PMV membranes as a substrate to generate AA. AA 

can then be further converted into 12-hydroxyeicosatetraenoic acid (12-HETE) by 12-lipoxygenase (12-



LOX), both of which were required for engulfment as well [36].  Further work remains to be done to better 

understand the regulation of MV uptake and to delineate potential differences between MV subtypes. 

Transfer of Protein  

Ray et al. reported that peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated 

transcription factor involved adipocyte differentiation, could be transferred to a THP-1 monocytic cell line 

[37].  Tang et al. demonstrated the PMV contain 12-LOX, which can be delivered to mast cells, where it 

leads to enhancement of lipoxin A4 (LXA4) production [38].  LXA4 is a negative regulator of inflammation, 

providing additional evidence that PMV can play both a positive and negative role in inflammatory 

responses.  In an intriguing study, Boudreau et al. provided evidence that a subset of PMV contain 

functional mitochondria and that these mitochondria could be transferred to neutrophils [39].  The 

physiological consequence of this transfer in uncertain but it suggests the possibility of platelets being 

able to provide an “energy boost” to cells under conditions in which PMV are produced. 

Transfer of miRNA 

miRNAs are approximately 22 nucleotide regulatory RNAs expressed in multicellular organisms [40].  

miRBase v21 (June 2014, http://www.mirbase.org/) lists 2588 mature human miRNAs while the 

GENCODE reference set (v22) derived from ENCODE data lists 4093 [41], although recent data provides 

strong evidence for more than twice that many [42]. MiRNAs regulate most (>60%) mammalian protein 

coding genes [43].  Some miRNAs are expressed ubiquitously, but many are tissue and/or developmental 

stage specific [42; 44]. Guided by the miRNA sequence, the RNA-induced silencing complex (RISC) 

causes translational inhibition followed by mRNA degradation caused by Argonaute (Ago) nucleases [45]. 

The impact of miRNAs on gene expression is often to fine-tune and reduce noise in protein expression 

[46].   

 Because of the commonality of PMV elevation in cardiovascular disease, the interaction between 

PMV and the endothelium has been an area of high interest.  In 2013, Gidlöf et al. reported finding miR-

22, miR-185, miR-320b, and miR-423-5p in the supernatant of activated platelets.  These miRNAs were 

taken up by the endothelial cell line HMEC-1.  This transfer was attenuated in the presence of brefeldin A, 

an inhibitor of vesicle formation.  Delivery of miR-320b resulted in a downregulation of ICAM-1 expression 

in the HMEC-1 cells.  While this report did not specify the extracellular vesicle responsible for the transfer, 

this was one of the first reports of vesicle-mediated platelet miRNA delivery [47].  A few months later, 

Patrick Provost et al. published their finding that PMV contain functional miR-223:Ago2 complexes.  

These PMV were internalized by HUVECs where they caused downregulation of miR-223 target mRNAs, 

FBXW7 and EFNA1 [48].  PMV-mediated delivery of miR-223 to HUVECs has also been reported to 

regulate the expression of the insulin-like growth factor 1 receptor (IGF1R).  Downregulation of IGF1R 

sensitized the HUVECs to apoptosis caused by advanced glycosylation end products [49]. 

 In addition to endothelial cells, PMV have also been reported to deliver miRNAs to macrophages.  

PMV-transferred miR-126-3p to macrophages resulted in lower expression levels of ATF3, ATP1B1, 

ATP9A, and RAI14.  Of these, lower levels of ATF3 and ATP1B1 protein was confirmed.  PMV treatment 

of macrophages also resulted decreased secretion of CCL4, Colony Stimulating Factor 1 (CSF1), TNFα, 

and enhanced phagocytic activity, although these effects appear to be miR-126-3p independent [50].   

 Elevated P?MV levels have also been reported in many cancers.  PMV-transferred miR-223 to 

A549 human lung cancer cells resulted in lower levels of the tumor suppressor erythrocyte membrane 

protein band 4.1-like 3 (EPB41L3) mRNA and protein.  Lower levels of EPB41L3 lead to enhanced tumor 

invasion in a transwell assay [51].  These results indicate the PMV-mediated miRNA delivery can affect 

gene expression in conditions beyond cardiovascular disease. 

PMV signaling via unknown mediators 



 Other physiological effects of PMV exposure to cells have been reported without the molecular 

mediator of the effect being identified.  Exposure to PMV results in neutrophil activation as measured by 

CD11b expression and increased phagocytic activity.  This activation required PMV P-selectin:neutrophil 

PSGL-1 interactions [52].  PMV also stimulated bovine coronary artery smooth muscle cells in a PDGF-

independent manner [53].  Finally, exposure of THP-1 cells to PMV resulted in aggregation of those cells 

and production of tissue factor positive MV from them [54]. 

Platelet microvesicle association with cardiovascular disease 

An increase in the concentration of PMV has been observed in almost all cardiovascular 

conditions, including acute coronary syndromes, arteriosclerosis obliterans, hypertension, type 2 

diabetes, and other conditions [1].  MV, including PMV, elicit multiple responses from the endothelium.  

Endothelial cell (EC) exposure to PMV induces effects on proliferation, NO production, and angiogenesis 

[22].  Multiple reports have indicated that circulating plasma MVs from sick patients are inherently 

different from those of healthy subjects, inducing different responses in the cells to which they are 

exposed.  Boulanger et al. demonstrated that MV from patients with myocardial infarction impaired 

endothelium-dependent relaxation, whereas MVs from healthy controls did not [55].  MV from metabolic 

syndrome patients elicited less NO production from ECs.[56]  Different angiogenic effects were observed 

with MV from type 2 diabetic patients compared to controls.[57]  Even within an individual, MV isolated by 

endarterectomy from atherosclerotic plaques were able to induce proliferation and angiogenesis in EC, 

while circulating MV were not [58].  These data indicate that not only do PMV increase in quantity in 

pathological conditions, but their effects on external cells are altered.  This is perhaps due to changes in 

the MV content modifying the signals they relay. 

 

Conclusion 

 Recent discoveries of the properties of EV reveal a world in which cellular content, including 

genetic material, is constantly being exchanged between multiple cell types, both healthy and 

pathological.  This review has focused on the role of PMV, but there is evidence that MV and exosomes 

from many cell types can signal and transfer their content extracellularly.  Additionally, it has been 

reported that platelets can adsorb RNA from the milieu of tumors, leading to the concept of the platelet as 

sentinel for pathological conditions [59].  With the uncovering of this new world of intercellular 

communication, analysis of platelet RNA and protein content now must be thought of in context of where 

it originated from and where it may be transferred to.  Additionally, the novel roles of platelets and platelet 

RNA in multiple biological processes and pathological conditions may be uncovered, leading to new 

biomarkers and new therapeutic targets. 

  



Table 1. Summary of reported PMV mediated communication events. 

 Target Cell MV 
molecule(s) 

Physiological Consequence Reference 

Lipid Mediated 
Signaling 

    

 Platelets Arachadonic 
Acid 

• Aggregation 

• Thromboxane Generation 

• Increase in COX-21 expression 

[18] 

 HUVEC2 Arachadonic 
Acid 

• Increased surface ICAM-13 
expression 

• Increased monocyte:HUVEC 
adhesion 

[19] 

 U-937 macrophage 
cell line 

Arachadonic 
Acid 

• Increased Mac-14 and ITGAL5 
expression 

• Increased Chemotaxis 

[19] 

 HUVEC Activated 
charcoal 
sensitive 
factor 

• Enhanced proliferation 

• Enhanced survival 

• Enhanced migration 

• Enhanced tube formation 

[22] 

 Rabbit pulmonary 
endothelial cells 

COX-2 • Endothelial arachidonic acid is 
transferred to the MV where it 
produces TXB2

6 

[21] 

     

Protein Mediated 
Signaling 

  •   

 Rat aortic 
endothelial cells 

VEGF7, bFGF8, 
PDGF9 

• Enhanced Angiogenesis [23] 

 Activated 
Endothelium 

RANTES10 • Enhanced monocyte arrest 

• Interaction required P-selectin, 
GPIb, GPIIb/IIIa11, and JAM-A12 

[24] 

 Fibroblast-like 
Synoviocytes 

IL-113
 • Increased IL-6 and IL-8 

production 

[25] 

 Activated CD4+ T 
cells 

TGF-β114 • Decreased release of IFNγ15, 
TNFα16, and IL-6 

• Increased production of TGF-β1 

• Increased CD25highFoxp3+ Tregs 

[27] 

 Monocytes CD40L17 • Increase in inflammatory signals 
(IL-1β, TNFα, MCP-118 

[26] 

     

Receptor Transfer   •   

 • Human CD34+ 
HSC19 

• Murine Sca-1+ 20 

CD41 • Improved adherence to 
endothelium 

• Improved engraftment 

[28] 

 • Erythroblasts 

• Myeloblasts 

• Monocytes 

CXCR421 

CD41 
CD62 

• Increased adhesion, 
proliferation, and survival 

• Activate signaling 

[29] 

 • Erythroblasts 

• UT-7 myeloid 
leukemia cell line 

CD41 
CXCR4 

• Enables infection of previously 
CXCR4 null cells by HIV22 

[30] 

 • Neutrophils GPIIb/IIIa • Enabled signaling to NF-κB23 in [32] 



response to GM-CSF24 

 • Angiogenic early 
outgrowth cells 

CXCR4 • Increased adhesion to ECM25 

• Enhanced proliferation, 
migration, and tube formation  

[31] 

     

Non-receptor 
transfer 

    

 THP-1 monocytic 
cell line 

PPARγ26/RXR27 
complex 

• Capable of DNA binding and 
affecting gene expression 

[37] 

l Mast cells 12-
lipoxygenase 

• Enhanced lipoxin A4 production [38] 

 Neutrophils Mitochondria • Unknown [39] 

     

miRNA Transfer     

 HUVEC miR-223 • Downregulation of FBXW728 and 
EFNA129 RNA 

[48] 

 HMEC-1 human 
microvascular 
endothelial cell line 

miR-22 
miR-185 
miR-320b 
miR-423-5p 

• Reduction of ICAM-1 [47] 

 HUVEC miR-223 • Downregulation of IGF-1R30 

• Apoptosis 

[49] 

 A549 human lung 
cancer cell line 

miR-223 • Downregulation of EPB41L331 

• Promotion of cell invasion 

[51] 

 Macrophages miR-126-3p • Downregulation of CCL432, 
CSF133, TNFα 

• Enhanced phagocytic capacity 

[50] 

     

Other/Unknown 
effector 

    

 Neutrophils  • Increase in neutrophil activation 
as measured by CD11b 
expression 

• Increased phagocytic activity 

• Required P-selectin:PSGL-134 
interaction 

[52] 

 Bovine coronary 
artery SMC35 

PDGF 
independent 

• Stimulated proliferation [53] 

 THP-1 monocytic 
cell line 

 • Aggregation of THP-1 cells 

• Production of TF+ monocytic 
MVs 

[54] 

 

Legend: 1 - cyclooxygenase-2, 2 – Human Umbilical Vein Endothelial Cell, 3 – Intercellular Adhesion 

Molecule-1, 4 – Macrophage-1 Antigen, 5 -Integrin Subunit Alpha L, 6 – Tromboxane B2, 7 – Vascular 

Endothelial Growth Factor, 8 -basic Fibroblast Growth Factor, 9 – Platelet Derived Growth Factor, 10 - 

Regulated on Activation, Normal T cell Expressed and Secreted, 11-Glycoprotein, 12-Junctional 

Adhesion Molecule-A, 13 – Interleukin-1, 14 – Transforming Growth Factor  - β1, 15 - Interferon γ, 16 – 

Tumor Necrosis Factor α, 17 – CD40 Ligand, 18 - Monocyte Chemoattractant Protein-1, 19 – 

Hematopoietic Stem Cell, 20 – Stem Cell Antigen-1, 21 – Chemokine Receptor 4, 22 – Human 

Immunodeficiency Virus, 23 – Nuclear Factor – κB, 24 - Granulocyte Macrophage Colony-Stimulating 



Factor, 25 – Extracellular Matrix, 26 - Peroxisome proliferator-activated receptor, 27 – Rentinoid X 

Receptor, 28 - F-Box And WD Repeat Domain Containing 7, 29 – Ephrin A1, 30 - Insulin-Like Growth 

Factor 1 Receptor, 31 - Erythrocyte Membrane Protein Band 4.1 Like 3, 32 - C-C Motif Chemokine Ligand 

4, 33 - Colony Stimulating Factor 1, 34 - P-Selectin Glycoprotein Ligand-1, 35 – Smooth Muscle Cells 
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