187 research outputs found
Open Wilson Lines and Chiral Condensates in Thermal Holographic QCD
We investigate various aspects of a proposal by Aharony and Kutasov
arXiv:0803.3547 [hep-th] for the gravity dual of an open Wilson line in the
Sakai-Sugimoto model or its non-compact version. In particular, we use their
proposal to determine the effect of finite temperature, as well as background
electric and magnetic fields, on the chiral symmetry breaking order parameter.
We also generalize their prescription to more complicated worldsheets and
identify the operators dual to such worldsheets.Comment: 45 pages, 18 figures; added reference
Sp(N) higher-derivative F-terms via singular superpotentials
We generalize the higher-derivative F-terms introduced by Beasley and Witten
(hep-th/0409149) for SU(2) superQCD to Sp(N) gauge theories with fundamental
matter. We generate these terms by integrating out massive modes at tree level
from an effective superpotential on the chiral ring of the microscopic theory.
Though this superpotential is singular, its singularities are mild enough to
permit the unambiguous identification of its minima, and gives sensible answers
upon integrating out massive modes near any given minimum.Comment: 15 pages, 6 figure
On singular effective superpotentials in supersymmetric gauge theories
We study N=1 supersymmetric SU(2) gauge theory in four dimensions with a
large number of massless quarks. We argue that effective superpotentials as a
function of local gauge-invariant chiral fields should exist for these
theories. We show that although the superpotentials are singular, they
nevertheless correctly describe the moduli space of vacua, are consistent under
RG flow to fewer flavors upon turning on masses, and also reproduce by a
tree-level calculation the higher-derivative F-terms calculated by Beasely and
Witten (hep-th/0409149) using instanton methods. We note that this phenomenon
can also occur in supersymmetric gauge theories in various dimensions.Comment: 21 pages, 5 figures; minor errors correcte
The quantum mechanics of perfect fluids
We consider the canonical quantization of an ordinary fluid. The resulting
long-distance effective field theory is derivatively coupled, and therefore
strongly coupled in the UV. The system however exhibits a number of
peculiarities, associated with the vortex degrees of freedom. On the one hand,
these have formally a vanishing strong-coupling energy scale, thus suggesting
that the effective theory's regime of validity is vanishingly narrow. On the
other hand, we prove an analog of Coleman's theorem, whereby the semiclassical
vacuum has no quantum counterpart, thus suggesting that the vortex premature
strong-coupling phenomenon stems from a bad identification of the ground state
and of the perturbative degrees of freedom. Finally, vortices break the usual
connection between short distances and high energies, thus potentially
impairing the unitarity of the effective theory.Comment: 35 page
Type I Non-Abelian Superconductors in Supersymmetric Gauge Theories
Non-BPS non-Abelian vortices with CP^1 internal moduli space are studied in
an N=2 supersymmetric U(1) x SU(2) gauge theory with softly breaking adjoint
mass terms. For generic internal orientations the classical force between two
vortices can be attractive or repulsive. On the other hand, the mass of the
scalars in the theory is always less than that of the vector bosons; also, the
force between two vortices with the same CP^1 orientation is always attractive:
for these reasons we interpret our model as a non-Abelian generalization of
type I superconductors. We compute the effective potential in the limit of two
well separated vortices. It is a function of the distance and of the relative
colour-flavour orientation of the two vortices; in this limit we find an
effective description in terms of two interacting CP^1 sigma models. In the
limit of two coincident vortices we find two different solutions with the same
topological winding and, for generic values of the parameters, different
tensions. One of the two solutions is described by a CP^1 effective sigma
model, while the other is just an Abelian vortex without internal degrees of
freedom. For generic values of the parameters, one of the two solutions is
metastable, while there are evidences that the other one is truly stable.Comment: 35 pages, 8 figures. v2: fixed typos and added small comments, v3
removed an unecessary figur
Large-density field theory, viscosity, and "" singularities from string duals
We analyze systems where an effective large-N expansion arises naturally in
gauge theories without a large number of colors: a sufficiently large charge
density alone can produce a perturbative string ('tHooft) expansion. One
example is simply the well-known NS5/F1 system dual to , here viewed as a 5+1 dimensional theory at finite density. This model is
completely stable, and we find that the existing string-theoretic solution of
this model yields two interesting results. First, it indicates that the shear
viscosity is not corrected by effects in this system. For flow
perpendicular to the F1 strings the viscosity to entropy ratio take the usual
value , but for flow parallel to the F1's it vanishes as at low
temperature. Secondly, it encodes singularities in correlation functions coming
from low-frequency modes at a finite value of the momentum along the
directions. This may provide a strong coupling analogue of finite density
condensed matter systems for which fermionic constituents of larger operators
contribute so-called "" singularities. In the NS5/F1 example, stretched
strings on the gravity side play the role of these composite operators. We
explore the analogue for our system of the Luttinger relation between charge
density and the volume bounded by these singular surfaces. This model provides
a clean example where the string-theoretic UV completion of the gravity dual to
a finite density field theory plays a significant and calculable role.Comment: 28 pages. v2: added reference
Virulence factors and antimicrobial resistance in uropathogenic escherichia coli strains isolated from cystitis and pyelonephritis
Background/aim: The aim of this study was to investigate the prevalence of virulence genes as well as patterns of antibiotic resistance in cystitis and pyelonephritis uropathogenic Escherichia coli (UPEC) isolates. Materials and methods: Two hundred UPEC isolates were collected from hospitalized patients with pyelonephritis (n = 50) and cystitis (n = 150) in Shafa Hospital in Iran. Antimicrobial susceptibility and ESBL production were determined with confirmatory tests. Polymerase chain reaction assay was performed to determine the prevalence of virulence genes in UPEC strains. Results: Of a total 200 UPEC isolates, the highest and lowest resistance rates to antibiotics were for cephalexin (74) and nitrofurantoin (9), respectively. Of these isolates, 72 (36) and 128 (64) strains were ESBL-positive and ESBL-negative, respectively. The frequency of fimH, papC, and hly was 64, 38, and 12, respectively. The most commonly identified virulence gene in ESBL-positive and ESBL-negative strains was fimH 46 (23) and 86 (43), respectively. The hlyA gene was more prevalent among patients with pyelonephritis than cystitis. Conclusion: The frequency of virulence genes was not significantly different between pyelonephritis and cystitis UPEC strains in the studied patients, but the prevalence rates of hlyA and papC genes were higher among UPEC strains isolated from inpatients compared to outpatients; hence, they could be considered as useful targets for prophylactic interventions. © TUBİTAK
Bosonic excitations of the AdS4 Reissner-Nordstrom black hole
We study the long-lived modes of the charge density and energy density
correlators in the strongly-coupled, finite density field theory dual to the
AdS4 Reissner-Nordstrom black hole. For small momenta q<<\mu, these correlators
contain a pole due to sound propagation, as well as a pole due to a long-lived,
purely imaginary mode analogous to the \mu=0 hydrodynamic charge diffusion
mode. As the temperature is raised in the range T\lesssim\mu, the sound
attenuation shows no significant temperature dependence. When T\gtrsim\mu, it
quickly approaches the \mu=0 hydrodynamic result where it decreases like 1/T.
It does not share any of the temperature-dependent properties of the 'zero
sound' of Landau Fermi liquids observed in the strongly-coupled D3/D7 field
theory. For such small momenta, the energy density spectral function is
dominated by the sound mode at all temperatures, whereas the charge density
spectral function undergoes a crossover from being dominated by the sound mode
at low temperatures to being dominated by the diffusion mode when T \mu^2/q.
This crossover occurs due to the changing residue at each pole. We also compute
the momentum dependence of these spectral functions and their corresponding
long-lived poles at fixed, low temperatures T<<\mu.Comment: 33 pages, 21 figures, 6 animation
Shear Modes, Criticality and Extremal Black Holes
We consider a (2+1)-dimensional field theory, assumed to be holographically
dual to the extremal Reissner-Nordstrom AdS(4) black hole background, and
calculate the retarded correlators of charge (vector) current and
energy-momentum (tensor) operators at finite momentum and frequency. We show
that, similar to what was observed previously for the correlators of scalar and
spinor operators, these correlators exhibit emergent scaling behavior at low
frequency. We numerically compute the electromagnetic and gravitational
quasinormal frequencies (in the shear channel) of the extremal
Reissner-Nordstrom AdS(4) black hole corresponding to the spectrum of poles in
the retarded correlators. The picture that emerges is quite simple: there is a
branch cut along the negative imaginary frequency axis, and a series of
isolated poles corresponding to damped excitations. All of these poles are
always in the lower half complex frequency plane, indicating stability. We show
that this analytic structure can be understood as the proper limit of finite
temperature results as T is taken to zero holding the chemical potential fixed.Comment: 28 pages, 7 figures, added reference
No-Drag String Configurations for Steadily Moving Quark-Antiquark Pairs in a Thermal Bath
We investigate the behavior of stationary string configurations on a
five-dimensional AdS black hole background which correspond to quark-antiquark
pairs steadily moving in an N=4 super Yang-Mills thermal bath. There are many
branches of solutions, depending on the quark velocity and separation as well
as on whether Euclidean or Lorentzian configurations are examined.Comment: references added; statements corrected; eliminated computation of jet
quenching parameter from Wilson loop of [Liu, Rajagopal, Wiedemann,
hep-th/0605178] using Euclidean string configurations since those authors
advocate [hep-th/0607062, footnote 14] the use of spacelike Lorentzian string
configurations instea
- …