2,184 research outputs found
The Universal Gaussian in Soliton Tails
We show that in a large class of equations, solitons formed from generic
initial conditions do not have infinitely long exponential tails, but are
truncated by a region of Gaussian decay. This phenomenon makes it possible to
treat solitons as localized, individual objects. For the case of the KdV
equation, we show how the Gaussian decay emerges in the inverse scattering
formalism.Comment: 4 pages, 2 figures, revtex with eps
Evaluating the efficacy and cost-effectiveness of web-based indicated prevention of major depression: design of a randomised controlled trial
BACKGROUND: Major depressive disorder (MDD) imposes a considerable disease burden on individuals and societies. Web-based interventions have shown to be effective in reducing depressive symptom severity. However, it is not known whether web-based interventions may also be effective in preventing the onset of MDD. The aim of this study is to evaluate the (cost-) effectiveness of an indicated web-based guided self-help intervention (GET.ON Mood Enhancer Prevention) on the onset of MDD. METHODS/DESIGN: A randomised controlled trial (RCT) will be conducted to compare the (cost-) effectiveness of the GET.ON Mood Enhancer Prevention training with a control condition exclusively receiving online-based psychoeducation on depression. Adults with subthreshold depression (N = 406) will be recruited from the general population and randomised to one of the two conditions. The primary outcome is time to onset of MDD within a 12-months follow-up period. MDD will be assessed according to DSM-IV criteria as assessed by the telephone-administered Structured Clinical Interview for DSM-IV (SCID). Time to onset of MDD will be assessed using life charts. Secondary outcomes include changes on various indicators of depressive symptom severity, anxiety and quality of life from baseline to post-treatment, to a 6-month and a 12-month follow up. Additionally, an economic evaluation using a societal perspective will be conducted to examine the intervention’s cost-effectiveness. DISCUSSION: This is one of the first randomised controlled trials that examines the effect of an indicated guided self-help web-based intervention on the incidence of major depression. If shown to be effective, the intervention will contribute to reducing the disease burden due to MDD in the general population. TRIAL REGISTRATION: German Clinical Trial Registration DRKS00004709
Inner Structure of Protostellar Collapse Candidate B335 Derived from Millimeter-Wave Interferometry
We present a study of the density structure of the protostellar collapse
candidate B335 using continuum observations from the IRAM Plateau de Bure
Interferometer made at wavelengths of 1.2mm and 3.0mm. We analyze these data,
which probe spatial scales from 5000 AU to 500 AU, directly in the visibility
domain by comparison to synthetic observations constructed from models that
assume different physical conditions. This approach allows for much more
stringent constraints to be derived from the data than from analysis of images.
A single radial power law in density provides a good description of the data,
with best fit power law index p=1.65+/-0.05. Through simulations, we quantify
the sensitivity of this result to various model uncertainties, including
assumptions of temperature distribution, outer boundary, dust opacity spectral
index, and an unresolved central component. The largest uncertainty comes from
the unknown presence of a centralized point source. A point source with 1.2mm
flux of F=12+/-7 mJy reduces the density index to p=1.47+/-0.07. The remaining
sources of systematic uncertainty, the most important of which is the
temperature distribution, likely contribute a total uncertainty of < 0.2. We
therefore find strong evidence that the power law index of the density
distribution within 5000 AU is significantly less than the value at larger
radii, close to 2.0 from previous studies of dust emission and extinction.
These results conform well to the generic paradigm of isolated, low-mass star
formation which predicts a power law density index close to p=1.5 for an inner
region of gravitational free fall onto the protostar.Comment: Accepted to the Astrophysical Journal; 27 pages, 3 figure
Glassy trapping of manifolds in nonpotential random flows
We study the dynamics of polymers and elastic manifolds in non potential
static random flows. We find that barriers are generated from combined effects
of elasticity, disorder and thermal fluctuations. This leads to glassy trapping
even in pure barrier-free divergenceless flows
(). The physics is described by a new RG fixed point at finite
temperature. We compute the anomalous roughness and dynamical
exponents for directed and isotropic manifolds.Comment: 5 pages, 3 figures, RevTe
Numerical Simulations of Globular Cluster Formation
We examine various physical processes associated with the formation of
globular clusters by using the three-dimensional Smoothed Particle
Hydrodynamics (SPH) code. Our code includes radiative cooling of gases, star
formation, energy feedback from stars including stellar winds and supernovae,
and chemical enrichment by stars. We assume that, in the collapsing galaxy,
isothermal cold clouds form through thermal condensations and become
proto-globular clouds. We calculate the size of proto-globular clouds by
solving the linearized equations for perturbation. We compute the evolution of
the inner region of the proto-cloud with our SPH code for various initial
radius and initial composition of gases. When the initial gases contain no
heavy elements, the evolution of proto-clouds sensitively depends on the
initial radius. For a smaller initial radius, the initial star burst is so
intense that the subsequent star formation occurs in the central regions to
form a dense star cluster as massive as the globular cluster. When the initial
gases contain some heavy elements, the metallicity of gases affects the
evolution and the final stellar mass. If the initial radius of the
proto-globular clouds was relatively large, the formation of a star cluster as
massive as the globular clusters requires the initial metallicity as high as
[Fe/H] . The self-enrichment of heavy elements in the star cluster
does not occur in all cases.Comment: Accpeted for publication in the ApJ. Correctiong errors in Table
Genome-Scale CRISPR-Cas9 Knockout Screening in Human Cells
The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)–associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.National Institutes of Health (U.S.) (Award 1DP1-MH100706)National Institutes of Health (U.S.) (1R01-DK097768
Quantum gravitational contributions to quantum electrodynamics
Quantum electrodynamics describes the interactions of electrons and photons.
Electric charge (the gauge coupling constant) is energy dependent, and there is
a previous claim that charge is affected by gravity (described by general
relativity) with the implication that the charge is reduced at high energies.
But that claim has been very controversial with the situation inconclusive.
Here I report an analysis (free from earlier controversies) demonstrating that
that quantum gravity corrections to quantum electrodynamics have a quadratic
energy dependence that result in the reduction of the electric charge at high
energies, a result known as asymptotic freedom.Comment: To be published in Nature. 19 pages LaTeX, no figure
pi-pi scattering in a QCD based model field theory
A model field theory, in which the interaction between quarks is mediated by
dressed vector boson exchange, is used to analyse the pionic sector of QCD. It
is shown that this model, which incorporates dynamical chiral symmetry
breaking, asymptotic freedom and quark confinement, allows one to calculate
, , and the partial wave amplitudes in -
scattering and obtain good agreement with the experimental data, with the
latter being well described up to energies \mbox{ MeV}.Comment: 23 Pages, 4 figures in PostScript format, PHY-7512-TH-93, REVTEX
Available via anonymous ftp in /pub: login anonymou get pipi93.tex Fig1.ps
Fig2.ps Fig3.ps Fig4.p
Multi-Jet Event Rates in Deep Inelastic Scattering and Determination of the Strong Coupling Constant
Jet event rates in deep inelastic ep scattering at HERA are investigated
applying the modified JADE jet algorithm. The analysis uses data taken with the
H1 detector in 1994 and 1995. The data are corrected for detector and
hadronization effects and then compared with perturbative QCD predictions using
next-to-leading order calculations. The strong coupling constant alpha_S(M_Z^2)
is determined evaluating the jet event rates. Values of alpha_S(Q^2) are
extracted in four different bins of the negative squared momentum
transfer~\qq in the range from 40 GeV2 to 4000 GeV2. A combined fit of the
renormalization group equation to these several alpha_S(Q^2) values results in
alpha_S(M_Z^2) = 0.117+-0.003(stat)+0.009-0.013(syst)+0.006(jet algorithm).Comment: 17 pages, 4 figures, 3 tables, this version to appear in Eur. Phys.
J.; it replaces first posted hep-ex/9807019 which had incorrect figure 4
Differential (2+1) Jet Event Rates and Determination of alpha_s in Deep Inelastic Scattering at HERA
Events with a (2+1) jet topology in deep-inelastic scattering at HERA are
studied in the kinematic range 200 < Q^2< 10,000 GeV^2. The rate of (2+1) jet
events has been determined with the modified JADE jet algorithm as a function
of the jet resolution parameter and is compared with the predictions of Monte
Carlo models. In addition, the event rate is corrected for both hadronization
and detector effects and is compared with next-to-leading order QCD
calculations. A value of the strong coupling constant of alpha_s(M_Z^2)=
0.118+- 0.002 (stat.)^(+0.007)_(-0.008) (syst.)^(+0.007)_(-0.006) (theory) is
extracted. The systematic error includes uncertainties in the calorimeter
energy calibration, in the description of the data by current Monte Carlo
models, and in the knowledge of the parton densities. The theoretical error is
dominated by the renormalization scale ambiguity.Comment: 25 pages, 6 figures, 3 tables, submitted to Eur. Phys.
- …
