4 research outputs found

    Assessing Inequitable Urban Heat Islands and Air Pollution Disparities with Low-Cost Sensors in Richmond, Virginia

    Get PDF
    Air pollution and the urban heat island effect are consistently linked to numerous respiratory and heat-related illnesses. Additionally, these stressors disproportionately impact low-income and historically marginalized communities due to their proximity to emissions sources, lack of access to green space, and exposure to other adverse environmental conditions. Here, we use relatively low-cost stationary sensors to analyze PM2.5 and temperature data throughout the city of Richmond, Virginia, on the ten hottest days of 2019. For both hourly means within the ten hottest days of 2019 and daily means for the entire record for the year, the temperature was found to exhibit a positive correlation with PM2.5. Analysis of hourly means on the ten hottest days yielded a diurnal pattern in which PM2.5 levels peaked in the early morning and reached their minima in the mid-afternoon. Spatially, sites exhibiting higher temperatures consistently had higher PM2.5 readings, with vulnerable communities in the east end and more intensely developed parts of the city experiencing significantly higher temperatures and PM2.5 concentrations than the suburban neighborhoods in the west end. These findings suggest an uneven distribution of air pollution in Richmond during extreme heat events that are similar in pattern but less pronounced than the temperature differences during these events, although further investigation is required to verify the extent of this relationship. As other studies have found both of these environmental stressors to correlate with the distribution of green space and other land-use factors in cities, innovative and sustainable planning decisions are crucial to the mitigation of these issues of inequity going forward

    Assessing Inequitable Urban Heat Islands and Air Pollution Disparities with Low-Cost Sensors in Richmond, Virginia

    No full text
    Air pollution and the urban heat island effect are consistently linked to numerous respiratory and heat-related illnesses. Additionally, these stressors disproportionately impact low-income and historically marginalized communities due to their proximity to emissions sources, lack of access to green space, and exposure to other adverse environmental conditions. Here, we use relatively low-cost stationary sensors to analyze PM2.5 and temperature data throughout the city of Richmond, Virginia, on the ten hottest days of 2019. For both hourly means within the ten hottest days of 2019 and daily means for the entire record for the year, the temperature was found to exhibit a positive correlation with PM2.5. Analysis of hourly means on the ten hottest days yielded a diurnal pattern in which PM2.5 levels peaked in the early morning and reached their minima in the mid-afternoon. Spatially, sites exhibiting higher temperatures consistently had higher PM2.5 readings, with vulnerable communities in the east end and more intensely developed parts of the city experiencing significantly higher temperatures and PM2.5 concentrations than the suburban neighborhoods in the west end. These findings suggest an uneven distribution of air pollution in Richmond during extreme heat events that are similar in pattern but less pronounced than the temperature differences during these events, although further investigation is required to verify the extent of this relationship. As other studies have found both of these environmental stressors to correlate with the distribution of green space and other land-use factors in cities, innovative and sustainable planning decisions are crucial to the mitigation of these issues of inequity going forward

    Thermal inequity in Richmond, VA: The effect of an unjust evolution of the urban landscape on urban heat islands

    No full text
    The urban heat island (UHI) effect is caused by intensive development practices in cities and the diminished presence of green space that results. The evolution of these phenomena has occurred over many decades. In many cities, historic zoning and redlining practices barred Black and minority groups from moving into predominately white areas and obtaining financial resources, a practice that still affects cities today, and has forced these already disadvantaged groups to live in some of the hottest areas. In this study, we used a new dataset on the spatial distribution of temperature during a heat wave in Richmond, Virginia to investigate potential associations between extreme heat and current and historical demographic, socioeconomic, and land use factors. We assessed these data at the census block level to determine if blocks with large differences in temperature also had significant variation in these covariates. The amount of canopy cover, percent impervious surface, and poverty level were all shown to be strong correlates of UHI when analyzed in conjunction with afternoon temperatures. We also found strong associations of historical policies and planning decisions with temperature using data from the University of Richmond’s Digital Scholarship Lab’s “Mapping Inequality” project. Finally, the Church Hill area of the city provided an interesting case study due to recent data suggesting the area’s gentrification. Differences in demographics, socioeconomic factors, and UHI were observed between north and (more gentrified) south Church Hill. Both in Church Hill and in Richmond overall, our research found that areas occupied by people of low socioeconomic status or minority groups disproportionately experienced extreme heat and corresponding impacts on health and quality of life
    corecore