10 research outputs found

    Low-rank Matrix Sensing With Dithered One-Bit Quantization

    Full text link
    We explore the impact of coarse quantization on low-rank matrix sensing in the extreme scenario of dithered one-bit sampling, where the high-resolution measurements are compared with random time-varying threshold levels. To recover the low-rank matrix of interest from the highly-quantized collected data, we offer an enhanced randomized Kaczmarz algorithm that efficiently solves the emerging highly-overdetermined feasibility problem. Additionally, we provide theoretical guarantees in terms of the convergence and sample size requirements. Our numerical results demonstrate the effectiveness of the proposed methodology.Comment: arXiv admin note: substantial text overlap with arXiv:2308.0069

    HDR Imaging With One-Bit Quantization

    Full text link
    Modulo sampling and dithered one-bit quantization frameworks have emerged as promising solutions to overcome the limitations of traditional analog-to-digital converters (ADCs) and sensors. Modulo sampling, with its high-resolution approach utilizing modulo ADCs, offers an unlimited dynamic range, while dithered one-bit quantization offers cost-efficiency and reduced power consumption while operating at elevated sampling rates. Our goal is to explore the synergies between these two techniques, leveraging their unique advantages, and to apply them to non-bandlimited signals within spline spaces. One noteworthy application of these signals lies in High Dynamic Range (HDR) imaging. In this paper, we expand upon the Unlimited One-Bit (UNO) sampling framework, initially conceived for bandlimited signals, to encompass non-bandlimited signals found in the context of HDR imaging. We present a novel algorithm rigorously examined for its ability to recover images from one-bit modulo samples. Additionally, we introduce a sufficient condition specifically designed for UNO sampling to perfectly recover non-bandlimited signals within spline spaces. Our numerical results vividly demonstrate the effectiveness of UNO sampling in the realm of HDR imaging.Comment: arXiv admin note: text overlap with arXiv:2308.0069

    Harnessing the Power of Sample Abundance: Theoretical Guarantees and Algorithms for Accelerated One-Bit Sensing

    Full text link
    One-bit quantization with time-varying sampling thresholds (also known as random dithering) has recently found significant utilization potential in statistical signal processing applications due to its relatively low power consumption and low implementation cost. In addition to such advantages, an attractive feature of one-bit analog-to-digital converters (ADCs) is their superior sampling rates as compared to their conventional multi-bit counterparts. This characteristic endows one-bit signal processing frameworks with what one may refer to as sample abundance. We show that sample abundance plays a pivotal role in many signal recovery and optimization problems that are formulated as (possibly non-convex) quadratic programs with linear feasibility constraints. Of particular interest to our work are low-rank matrix recovery and compressed sensing applications that take advantage of one-bit quantization. We demonstrate that the sample abundance paradigm allows for the transformation of such problems to merely linear feasibility problems by forming large-scale overdetermined linear systems -- thus removing the need for handling costly optimization constraints and objectives. To make the proposed computational cost savings achievable, we offer enhanced randomized Kaczmarz algorithms to solve these highly overdetermined feasibility problems and provide theoretical guarantees in terms of their convergence, sample size requirements, and overall performance. Several numerical results are presented to illustrate the effectiveness of the proposed methodologies.Comment: arXiv admin note: text overlap with arXiv:2301.0346

    Joint Waveform and Passive Beamformer Design in Multi-IRS-Aided Radar

    Full text link
    Intelligent reflecting surface (IRS) technology has recently attracted a significant interest in non-light-of-sight radar remote sensing. Prior works have largely focused on designing single IRS beamformers for this problem. For the first time in the literature, this paper considers multi-IRS-aided multiple-input multiple-output (MIMO) radar and jointly designs the transmit unimodular waveforms and optimal IRS beamformers. To this end, we derive the Cramer-Rao lower bound (CRLB) of target direction-of-arrival (DoA) as a performance metric. Unimodular transmit sequences are the preferred waveforms from a hardware perspective. We show that, through suitable transformations, the joint design problem can be reformulated as two unimodular quadratic programs (UQP). To deal with the NP-hard nature of both UQPs, we propose unimodular waveform and beamforming design for multi-IRS radar (UBeR) algorithm that takes advantage of the low-cost power method-like iterations. Numerical experiments illustrate that the MIMO waveforms and phase shifts obtained from our UBeR algorithm are effective in improving the CRLB of DoA estimation

    Quantized Phase-Shift Design of Active IRS for Integrated Sensing and Communications

    Full text link
    Integrated sensing and communications (ISAC) is a spectrum-sharing paradigm that allows different users to jointly utilize and access the crowded electromagnetic spectrum. In this context, intelligent reflecting surfaces (IRSs) have lately emerged as an enabler for non-line-of-sight (NLoS) ISAC. Prior IRS-aided ISAC studies assume passive surfaces and rely on the continuous-valued phase shift model. In practice, the phase-shifts are quantized. Moreover, recent research has shown substantial performance benefits with active IRS. In this paper, we include these characteristics in our IRS-aided ISAC model to maximize the receive radar and communications signal-to-noise ratios (SNR) subjected to a unimodular IRS phase-shift vector and power budget. The resulting optimization is a highly non-convex unimodular quartic optimization problem. We tackle this via a bi-quadratic transformation to split the problem into two quadratic sub-problems that are solved using the power iteration method. The proposed approach employs the M-ary unimodular sequence design via relaxed power method-like iteration (MaRLI) to design the quantized phase-shifts. As expected, numerical experiments demonstrate that our active IRS-ISAC system design with MaRLI converges to a higher value of SNR when we increase the number of IRS quantization bits

    Submodular Optimization for Placement of Intelligent Reflecting Surfaces in Sensing Systems

    Full text link
    Intelligent reflecting surfaces (IRS) and their optimal deployment are the new technological frontier in sensing applications. Recently, IRS have demonstrated potential in advancing target estimation and detection. While the optimal phase-shift of IRS for different tasks has been studied extensively in the literature, the optimal placement of multiple IRS platforms for sensing applications is less explored. In this paper, we design the placement of IRS platforms for sensing by maximizing the mutual information. In particular, we use this criterion to determine an approximately optimal placement of IRS platforms to illuminate an area where the target has a hypothetical presence. After demonstrating the submodularity of the mutual information criteria, we tackle the design problem by means of a constant-factor approximation algorithm for submodular optimization. Numerical results are presented to validate the proposed submodular optimization framework for optimal IRS placement with worst case performance bounded to 1−1/e≈63%1-1/e\approx 63 \%

    Moving Target Detection via Multi-IRS-Aided OFDM Radar

    Full text link
    An intelligent reflecting surface (IRS) consists of passive reflective elements capable of altering impinging waveforms. The IRS-aided radar systems have recently been shown to improve detection and estimation performance by exploiting the target information collected via non-line-of-sight paths. However, the waveform design problem for an IRS-aided radar has remained relatively unexplored. In this paper, we consider a multi-IRS-aided orthogonal frequency-division multiplexing (OFDM) radar and study the theoretically achievable accuracy of target detection. In addition, we jointly design the OFDM signal and IRS phase-shifts to optimize the target detection performance via an alternating optimization approach. To this end, we formulate the IRS phase-shift design problem as a unimodular bi-quadratic program which is tackled by a computationally cost-effective approach based on power-method-like iterations. Numerical experiments illustrate that our proposed joint design of IRS phase-shifts and the OFDM code improves the detection performance in comparison with conventional OFDM radar

    Matrix Completion via Memoryless Scalar Quantization

    Full text link
    We delve into the impact of memoryless scalar quantization on matrix completion. We broaden our theoretical discussion to encompass the coarse quantization scenario with a dithering scheme, where the only available information for low-rank matrix recovery is few-bit low-resolution data. Our primary motivation for this research is to evaluate the recovery performance of nuclear norm minimization in handling quantized matrix problems without the use of any regularization terms such as those stemming from maximum likelihood estimation. We furnish theoretical guarantees for both scenarios: when access to dithers is available during the reconstruction process, and when we have access solely to the statistical properties of the dithers. Additionally, we conduct a comprehensive analysis of the effects of sign flips and prequantization noise on the recovery performance, particularly when the impact of sign flips is quantified using the well-known Hamming distance in the upper bound of recovery error.Comment: arXiv admin note: substantial text overlap with arXiv:2310.0322
    corecore