9 research outputs found

    The Repetitive Landscape of the Barley Genome

    Get PDF
    While transposable elements (TEs) comprise the bulk of plant genomic DNA, how they contribute to genome structure and organization is still poorly understood. Especially, in large genomes where TEs make the majority of genomic DNA, it is still unclear whether TEs target specific chromosomal regions or whether they simply accumulate where they are best tolerated. The barley genome with its vast repetitive fraction is an ideal system to study chromosomal organization and evolution of TEs. Genes make only about 2% of the genome, while over 80% is derived from TEs. The TE fraction is composed of at least 350 different families. However, 50% of the genome is comprised of only 15 high-copy TE families, while all other TE families are present in moderate or low-copy numbers. The barley genome is highly compartmentalized with different types of TEs occupying different chromosomal “niches”, such as distal, interstitial or proximal regions of chromosome arms. Furthermore, gene space represents its own distinct genomic compartment that is enriched in small non-autonomous DNA transposons, suggesting that these TEs specifically target promoters and downstream regions. Some TE families also show a strong preference to insert in specific sequence motifs which may, in part, explain their distribution. The family-specific distribution patterns result in distinct TE compositions of different chromosomal compartments.Peer reviewe

    Genome-wide maps of ribosomal occupancy provide insights into adaptive evolution and regulatory roles of uORFs during Drosophila development

    No full text
    corecore