114 research outputs found

    Potential Role for Peptidylarginine Deiminase 2 (PAD2) in Citrullination of Canine Mammary Epithelial Cell Histones

    Get PDF
    Peptidylarginine Deiminases (PADs) convert arginine residues on substrate proteins to citrulline. Previous reports have documented that PAD2 expression and activity varies across the estrous cycle in the rodent uterus and pituitary gland, however, the expression and function of PAD2 in mammary tissue has not been previously reported. To gain more insight into potential reproductive roles for PAD2, in this study we evaluated PAD2 expression and localization throughout the estrous cycle in canine mammary tissue and then identified possible PAD2 enzymatic targets. Immunohistochemical and immunofluorescence analysis found PAD2 expression is low in anestrus, limited to a distinct, yet sparse, subset of epithelial cells within ductal alveoli during estrus/early diestrus, and encompasses the entire epithelium of the mammary duct in late diestrus. At the subcellular level, PAD2 is expressed in the cytoplasm, and to a lesser extent, the nucleus of these epithelial cells. Surprisingly, stimulation of canine mammary tumor cells (CMT25) shows that EGF, but not estrogen or progesterone, upregulates PAD2 transcription and translation suggesting EGF regulation of PAD2 and possibly citrullination in vivo. To identify potential PAD2 targets, anti-pan citrulline western blots were performed and results showed that citrullination activity is limited to diestrus with histones appearing to represent major enzymatic targets. Use of site-specific anti-citrullinated histone antibodies found that the N-terminus of histone H3, but not H4, appears to be the primary target of PAD activity in mammary epithelium. This observation supports the hypothesis that PAD2 may play a regulatory role in the expression of lactation related genes via histone citrullination during diestrus

    The rheumatoid arthritis specific Sa antigen is citrullinated vimentin

    Get PDF
    Contains fulltext : 57944.pdf (publisher's version ) (Open Access

    Functional Role of Dimerization of Human Peptidylarginine Deiminase 4 (PAD4)

    Get PDF
    Peptidylarginine deiminase 4 (PAD4) is a homodimeric enzyme that catalyzes Ca2+-dependent protein citrullination, which results in the conversion of arginine to citrulline. This paper demonstrates the functional role of dimerization in the regulation of PAD4 activity. To address this question, we created a series of dimer interface mutants of PAD4. The residues Arg8, Tyr237, Asp273, Glu281, Tyr435, Arg544 and Asp547, which are located at the dimer interface, were mutated to disturb the dimer organization of PAD4. Sedimentation velocity experiments were performed to investigate the changes in the quaternary structures and the dissociation constants (Kd) between wild-type and mutant PAD4 monomers and dimers. The kinetic data indicated that disrupting the dimer interface of the enzyme decreases its enzymatic activity and calcium-binding cooperativity. The Kd values of some PAD4 mutants were much higher than that of the wild-type (WT) protein (0.45 µM) and were concomitant with lower kcat values than that of WT (13.4 s−1). The Kd values of the monomeric PAD4 mutants ranged from 16.8 to 45.6 µM, and the kcat values of the monomeric mutants ranged from 3.3 to 7.3 s−1. The kcat values of these interface mutants decreased as the Kd values increased, which suggests that the dissociation of dimers to monomers considerably influences the activity of the enzyme. Although dissociation of the enzyme reduces the activity of the enzyme, monomeric PAD4 is still active but does not display cooperative calcium binding. The ionic interaction between Arg8 and Asp547 and the Tyr435-mediated hydrophobic interaction are determinants of PAD4 dimer formation

    Antibodies to citrullinated proteins and differences in clinical progression of rheumatoid arthritis

    Get PDF
    Antibodies to citrullinated proteins (anti-cyclic-citrullinated peptide [anti-CCP] antibodies) are highly specific for rheumatoid arthritis (RA) and precede the onset of disease symptoms, indicating a pathogenetic role for these antibodies in RA. We recently showed that distinct genetic risk factors are associated with either anti-CCP-positive disease or anti-CCP-negative disease. These data are important as they indicate that distinct pathogenic mechanisms are underlying anti-CCP-positive disease or anti-CCP-negative disease. Likewise, these observations raise the question of whether anti-CCP-positive RA and anti-CCP-negative RA are clinically different disease entities. We therefore investigated whether RA patients with anti-CCP antibodies have a different clinical presentation and disease course compared with patients without these autoantibodies. In a cohort of 454 incident patients with RA, 228 patients were anti-CCP-positive and 226 patients were anti-CCP-negative. The early symptoms, tender and swollen joint count, and C-reactive protein level at inclusion, as well as the swollen joint count and radiological destruction during 4 years of follow-up, were compared for the two groups. There were no differences in morning stiffness, type, location and distribution of early symptoms, patients' rated disease activity and C-reactive protein at inclusion between RA patients with and without anti-CCP antibodies. The mean tender and swollen joint count for the different joints at inclusion was similar. At follow-up, patients with anti-CCP antibodies had more swollen joints and more severe radiological destruction. Nevertheless, the distribution of affected joints, for swelling, bone erosions and joint space narrowing, was similar. In conclusion, the phenotype of RA patients with or without anti-CCP antibodies is similar with respect to clinical presentation but differs with respect to disease course

    Anti-CCP2 Antibodies: An Overview and Perspective of the Diagnostic Abilities of this Serological Marker for Early Rheumatoid Arthritis

    Get PDF
    The literature of the last 4 years confirms that the anti-CCP2 test is a very useful marker for the early and specific diagnosis of rheumatoid arthritis (RA). The anti-CCP2 test is very specific for RA (95–99%) and has sensitivity comparable to that of the rheumatoid factor (70–75%). The antibodies can be detected very early in the disease and can be used as an indicator for the progression and prognosis of RA. In this review, these interesting properties and some future possibilities of this diagnostic test are discussed
    corecore