59 research outputs found

    Large nonzero-moment magnetic strings in antiferromagnetic crystals of the manganite type

    Full text link
    The magnetic strings in antiferromagnetic crystals with the spin S=1/2S = 1 /2 differ from the magnetic polarons (ferrons) by the absence of the additional magnetic moment. We show that in the S>1/2S > 1 /2 double exchange crystals with the antiferromagnetic s−ds-d exchange, a new type of magnetic strings appears, which possesses a magnetic moment. It is concentrated at the center of the string, and the magnetized string is, in its essence, the state intermediate between the string and the ferron. In antiferromagnetic manganites, this moment is by an order of magnitude larger than that of a magnetic atom. Unlike the conventional ferrons, the magnetization of the strings exists at any parameters of the crystals under consideration. We argue that this new type of magnetic state can be relevant to some doped antiferromagnets including manganites.Comment: 7 pages, 1 eps figure, RevTeX, submitted to Phys. Rev.

    The phase-separated states in antiferromagnetic semiconductors with polarizable lattice

    Full text link
    The possibility of the slab or stripe phase separation (alternating ferromagnetic highly- conductive and insulating antiferromagnetic layers) is proved for isotropic degenerate antiferromagnetic semiconductors. This type of phase separation competes with the droplet phase separation (ferromagnetic droplets in the antiferromagnetic host or vice versa). The interaction of electrons with optical phonons alone cannot cause phase-separated state with alternating highly-conductive and insulating regions but it stabilizes the magnetic phase separation. The magnetostriction deformation of the lattice in the phase-separated state is investigated.Comment: 17 Pages, 1 EPS Figur

    Composite Spin Waves, Quasi-Particles and Low Temperature resistivity in Double Exchange Systems

    Full text link
    We make a quantum description of the electron low temperature properties of double exchange materials. In these systems there is a strong coupling between the core spin and the carriers spin. This large coupling makes the low energy spin waves to be a combination of ion and electron density spin waves. We study the form and dispersion of these composite spin wave excitations. We also analyze the spin up and down spectral functions of the temperature dependent quasi-particles of this system. Finally we obtain that the thermally activated composite spin waves renormalize the carriers effective mass and this gives rise to a low temperature resistivity scaling as T ^{5/2}.Comment: 4 pages, REVTE

    Doping dependence of the exchange energies in bilayer manganites: Role of orbital degrees of freedom

    Full text link
    Recently, an intriguing doping dependence of the exchange energies in the bilayer manganites La2−2xSr1+2xMn2O7La_{2-2x}Sr_{1+2x}Mn_2O_7 has been observed in the neutron scattering experiments. The intra-layer exchange only weakly changed with doping while the inter-layer one drastically decreased. Here we propose a theory which accounts for these experimental findings. We argue, that the observed striking doping dependence of the exchange energies can be attributed to the evaluation of the orbital level splitting with doping. The latter is handled by the interplay between Jahn-Teller effect (supporting an axial orbital) and the orbital anisotropy of the electronic band in the bilayer structure (promoting an in-plane orbital), which is monitored by the Coulomb repulsion. The presented theory, while being a mean-field type, describes well the experimental data and also gives the estimates of the several interesting energy scales involved in the problem.Comment: Added references, corrected typos. To appear in Phys. Rev.

    The types of Mott insulator

    Full text link
    There are two classes of Mott insulators in nature, distinguished by their responses to weak doping. With increasing chemical potential, Type I Mott insulators undergo a first order phase transition from the undoped to the doped phase. In the presence of long-range Coulomb interactions, this leads to an inhomogeneous state exhibiting ``micro-phase separation.'' In contrast, in Type II Mott insulators charges go in continuously above a critical chemical potential. We show that if the insulating state has a broken symmetry, this increases the likelihood that it will be Type I. There exists a close analogy between these two types of Mott insulators and the familiar Type I and Type II superconductors

    Percolative phase separation induced by nonuniformly distributed excess oxygens

    Full text link
    The zero-field 139^{139}La and 55^{55}Mn nuclear magnetic resonances were studied in La0.8Ca0.2MnO3+δ\rm La_{0.8}Ca_{0.2}MnO_{3+\delta} with different oxygen stoichiometry δ\delta. The signal intensity, peak frequency and line broadening of the 139^{139}La NMR spectrum show that excess oxygens have a tendency to concentrate and establish local ferromagnetic ordering around themselves. These connect the previously existed ferromagnetic clusters embedded in the antiferromagnetic host, resulting in percolative conduction paths. This phase separation is not a charge segregation type, but a electroneutral type. The magnetoresistance peak at the temperature where percolative paths start to form provides a direct evidence that phase separation is one source of colossal magnetoresistance effect.Comment: 4 pages, 5 figure

    Spiral phase and phase separation of the double exchange model in the large-S limit

    Full text link
    The phase diagram of the double exchange model is studied in the large-S limit at zero temperature in two and three dimensions. We find that the spiral state has lower energy than the canted antiferromagnetic state in the region between the antiferromagnetic phase and the ferromagnetic phase. At small doping, the spiral phase is unstable against phase separation due to its negative compressibility. When the Hund coupling is small, the system separates into spiral regions and antiferromagnetic regions. When the Hund coupling is large, the spiral phase disappears completely and the system separates into ferromagnetic regions and antiferromagnetic regions.Comment: 7 pages, 3 postscript figures. To be published in Phys. Rev.

    Argon annealing of the oxygen-isotope exchanged manganite La_{0.8}Ca_{0.2}MnO_{3+y}

    Full text link
    We have resolved a controversial issue concerning the oxygen-isotope shift of the ferromagnetic transition temperature T_{C} in the manganite La_{0.8}Ca_{0.2}MnO_{3+y}. We show that the giant oxygen-isotope shift of T_C observed in the normal oxygen-isotope exchanged samples is indeed intrinsic, while a much smaller shift observed in the argon annealed samples is an artifact. The argon annealing causes the 18O sample to partially exchange back to the 16O isotope due to a small 16O contamination in the Ar gas. Such a contamination is commonly caused by the oxygen outgas that is trapped in the tubes, connectors and valves. The present results thus umambiguously demonstrate that the observed large oxygen isotope effect is an intrinsic property of manganites, and places an important constraint on the basic physics of these materials.Comment: 4 pages, 3 figures, submitted to PR

    Stability and dynamics of free magnetic polarons

    Full text link
    The stability and dynamics of a free magnetic polaron are studied by Monte Carlo simulation of a classical two-dimensional Heisenberg model coupled to a single electron. We compare our results to the earlier mean-field analysis of the stability of the polaron, finding qualitative similarity but quantitative differences. The dynamical simulations give estimates of the temperature dependence of the polaron diffusion, as well as a crossover to a tunnelling regime.Comment: 4 pages including 4 .eps figure

    Cantor Spectra for Double Exchange Model

    Full text link
    We numerically study energy spectra and localization properties of the double exchange model at irrational filling factor. To obtain variational ground state, we use a mumerical technique in momentum space by ``embedded'' boundary condition which has no finite size effect a priori. Although the Hamiltonian has translation invariance, the ground state spontaneously exhibits a self-similarity. Scaling and multi-fractal analysis for the wave functions are performed and the scaling indices α\alpha's are obtained. The energy spectrum is found to be a singular continuous, so-called the Cantor set with zero Lebesque measure.Comment: 4 pages, 4 figures, revtex, corrected some typos, accepted for publication in PR
    • …
    corecore