24 research outputs found

    Hydrodynamic reductions of multi-dimensional dispersionless PDEs: the test for integrability

    Get PDF
    A (d+1)-dimensional dispersionless PDE is said to be integrable if its n-component hydrodynamic reductions are locally parametrized by (d-1)n arbitrary functions of one variable. Given a PDE which does not pass the integrability test, the method of hydrodynamic reductions allows one to effectively reconstruct additional differential constraints which, when added to the equation, make it an integrable system in fewer dimensions (if consistent).Comment: 16 page

    Integrable equations of the dispersionless Hirota type and hypersurfaces in the Lagrangian Grassmannian

    Get PDF
    We investigate integrable second order equations of the form F(u_{xx}, u_{xy}, u_{yy}, u_{xt}, u_{yt}, u_{tt})=0. Familiar examples include the Boyer-Finley equation, the potential form of the dispersionless Kadomtsev-Petviashvili equation, the dispersionless Hirota equation, etc. The integrability is understood as the existence of infinitely many hydrodynamic reductions. We demonstrate that the natural equivalence group of the problem is isomorphic to Sp(6), revealing a remarkable correspondence between differential equations of the above type and hypersurfaces of the Lagrangian Grassmannian. We prove that the moduli space of integrable equations of the dispersionless Hirota type is 21-dimensional, and the action of the equivalence group Sp(6) on the moduli space has an open orbit.Comment: 32 page

    On a class of three-dimensional integrable Lagrangians

    Get PDF
    We characterize non-degenerate Lagrangians of the form ∫f(ux,uy,ut)dxdydt \int f(u_x, u_y, u_t) dx dy dt such that the corresponding Euler-Lagrange equations (fux)x+(fuy)y+(fut)t=0 (f_{u_x})_x+ (f_{u_y})_y+ (f_{u_t})_t=0 are integrable by the method of hydrodynamic reductions. The integrability conditions constitute an over-determined system of fourth order PDEs for the Lagrangian density ff, which is in involution and possess interesting differential-geometric properties. The moduli space of integrable Lagrangians, factorized by the action of a natural equivalence group, is three-dimensional. Familiar examples include the dispersionless Kadomtsev-Petviashvili (dKP) and the Boyer-Finley Lagrangians, f=ux3/3+uy2−uxutf=u_x^3/3+u_y^2-u_xu_t and f=ux2+uy2−2eutf=u_x^2+u_y^2-2e^{u_t}, respectively. A complete description of integrable cubic and quartic Lagrangians is obtained. Up to the equivalence transformations, the list of integrable cubic Lagrangians reduces to three examples, f=uxuyut,f=ux2uy+uyut,andf=ux3/3+uy2−uxut(dKP). f=u_xu_yu_t, f=u_x^2u_y+u_yu_t, and f=u_x^3/3+u_y^2-u_xu_t ({\rm dKP}). There exists a unique integrable quartic Lagrangian, f=ux4+2ux2ut−uxuy−ut2. f=u_x^4+2u_x^2u_t-u_xu_y-u_t^2. We conjecture that these examples exhaust the list of integrable polynomial Lagrangians which are essentially three-dimensional (it was verified that there exist no polynomial integrable Lagrangians of degree five). We prove that the Euler-Lagrange equations are integrable by the method of hydrodynamic reductions if and only if they possess a scalar pseudopotential playing the role of a dispersionless `Lax pair'. MSC: 35Q58, 37K05, 37K10, 37K25. Keywords: Multi-dimensional Dispersionless Integrable Systems, Hydrodynamic Reductions, Pseudopotentials.Comment: 12 pages A4 format, standard Latex 2e. In the file progs.tar we include the programs needed for computations performed in the paper. Read 1-README first. The new version includes two new section

    The characterization of two-component (2+1)-dimensional integrable systems of hydrodynamic type

    Get PDF
    We obtain the necessary and sufficient conditions for a two-component (2+1)-dimensional system of hydrodynamic type to possess infinitely many hydrodynamic reductions. These conditions are in involution, implying that the systems in question are locally parametrized by 15 arbitrary constants. It is proved that all such systems possess three conservation laws of hydrodynamic type and, therefore, are symmetrizable in Godunov's sense. Moreover, all such systems are proved to possess a scalar pseudopotential which plays the role of the `dispersionless Lax pair'. We demonstrate that the class of two-component systems possessing a scalar pseudopotential is in fact identical with the class of systems possessing infinitely many hydrodynamic reductions, thus establishing the equivalence of the two possible definitions of the integrability. Explicit linearly degenerate examples are constructed.Comment: 15 page

    S-functions, reductions and hodograph solutions of the r-th dispersionless modified KP and Dym hierarchies

    Get PDF
    We introduce an S-function formulation for the recently found r-th dispersionless modified KP and r-th dispersionless Dym hierarchies, giving also a connection of these SS-functions with the Orlov functions of the hierarchies. Then, we discuss a reduction scheme for the hierarchies that together with the SS-function formulation leads to hodograph systems for the associated solutions. We consider also the connection of these reductions with those of the dispersionless KP hierarchy and with hydrodynamic type systems. In particular, for the 1-component and 2-component reduction we derive, for both hierarchies, ample sets of examples of explicit solutions.Comment: 35 pages, uses AMS-Latex, Hyperref, Geometry, Array and Babel package

    On a class of second-order PDEs admitting partner symmetries

    Full text link
    Recently we have demonstrated how to use partner symmetries for obtaining noninvariant solutions of heavenly equations of Plebanski that govern heavenly gravitational metrics. In this paper, we present a class of scalar second-order PDEs with four variables, that possess partner symmetries and contain only second derivatives of the unknown. We present a general form of such a PDE together with recursion relations between partner symmetries. This general PDE is transformed to several simplest canonical forms containing the two heavenly equations of Plebanski among them and two other nonlinear equations which we call mixed heavenly equation and asymmetric heavenly equation. On an example of the mixed heavenly equation, we show how to use partner symmetries for obtaining noninvariant solutions of PDEs by a lift from invariant solutions. Finally, we present Ricci-flat self-dual metrics governed by solutions of the mixed heavenly equation and its Legendre transform.Comment: LaTeX2e, 26 pages. The contents change: Exact noninvariant solutions of the Legendre transformed mixed heavenly equation and Ricci-flat metrics governed by solutions of this equation are added. Eq. (6.10) on p. 14 is correcte

    Dispersive deformations of hydrodynamic reductions of 2D dispersionless integrable systems

    Full text link
    We demonstrate that hydrodynamic reductions of dispersionless integrable systems in 2+1 dimensions, such as the dispersionless Kadomtsev-Petviashvili (dKP) and dispersionless Toda lattice (dTl) equations, can be deformed into reductions of the corresponding dispersive counterparts. Modulo the Miura group, such deformations are unique. The requirement that any hydrodynamic reduction possesses a deformation of this kind imposes strong constraints on the structure of dispersive terms, suggesting an alternative approach to the integrability in 2+1 dimensions.Comment: 18 pages, section adde
    corecore