Recently we have demonstrated how to use partner symmetries for obtaining
noninvariant solutions of heavenly equations of Plebanski that govern heavenly
gravitational metrics. In this paper, we present a class of scalar second-order
PDEs with four variables, that possess partner symmetries and contain only
second derivatives of the unknown. We present a general form of such a PDE
together with recursion relations between partner symmetries. This general PDE
is transformed to several simplest canonical forms containing the two heavenly
equations of Plebanski among them and two other nonlinear equations which we
call mixed heavenly equation and asymmetric heavenly equation. On an example of
the mixed heavenly equation, we show how to use partner symmetries for
obtaining noninvariant solutions of PDEs by a lift from invariant solutions.
Finally, we present Ricci-flat self-dual metrics governed by solutions of the
mixed heavenly equation and its Legendre transform.Comment: LaTeX2e, 26 pages. The contents change: Exact noninvariant solutions
of the Legendre transformed mixed heavenly equation and Ricci-flat metrics
governed by solutions of this equation are added. Eq. (6.10) on p. 14 is
correcte