Abstract

Recently we have demonstrated how to use partner symmetries for obtaining noninvariant solutions of heavenly equations of Plebanski that govern heavenly gravitational metrics. In this paper, we present a class of scalar second-order PDEs with four variables, that possess partner symmetries and contain only second derivatives of the unknown. We present a general form of such a PDE together with recursion relations between partner symmetries. This general PDE is transformed to several simplest canonical forms containing the two heavenly equations of Plebanski among them and two other nonlinear equations which we call mixed heavenly equation and asymmetric heavenly equation. On an example of the mixed heavenly equation, we show how to use partner symmetries for obtaining noninvariant solutions of PDEs by a lift from invariant solutions. Finally, we present Ricci-flat self-dual metrics governed by solutions of the mixed heavenly equation and its Legendre transform.Comment: LaTeX2e, 26 pages. The contents change: Exact noninvariant solutions of the Legendre transformed mixed heavenly equation and Ricci-flat metrics governed by solutions of this equation are added. Eq. (6.10) on p. 14 is correcte

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 11/12/2019