446 research outputs found

    Prospects for SIMPLE 2000: A large-mass, low-background Superheated Droplet Detector for WIMP searches

    Get PDF
    SIMPLE 2000 (Superheated Instrument for Massive ParticLE searches) will consist of an array of eight to sixteen large active mass (∌15\sim15 g) Superheated Droplet Detectors(SDDs) to be installed in the new underground laboratory of Rustrel-Pays d'Apt. Several factors make of SDDs an attractive approach for the detection of Weakly Interacting Massive Particles (WIMPs), namely their intrinsic insensitivity to minimum ionizing particles, high fluorine content, low cost and operation near ambient pressure and temperature. We comment here on the fabrication, calibration and already-competitive first limits from SIMPLE prototype SDDs, as well as on the expected immediate increase in sensitivity of the program, which aims at an exposure of >>25 kg-day during the year 2000. The ability of modest-mass fluorine-rich detectors to explore regions of neutralino parameter space beyond the reach of the most ambitious cryogenic projects is pointed out.Comment: 19 pages, 10 figures included. New Journal of Physics, in pres

    Superheated Microdrops as Cold Dark Matter Detectors

    Get PDF
    It is shown that under realistic background considerations, an improvement in Cold Dark Matter sensitivity of several orders of magnitude is expected from a detector based on superheated liquid droplets. Such devices are totally insensitive to minimum ionizing radiation while responsive to nuclear recoils of energies ~ few keV. They operate on the same principle as the bubble chamber, but offer unattended, continuous, and safe operation at room temperature and atmospheric pressure.Comment: 15 pgs, 4 figures include

    Fermi Surface of Alpha-Uranium at Ambient Pressure

    Full text link
    We have performed de Haas-van Alphen measurements of the Fermi surface of alpha-uranium single crystals at ambient pressure within the alpha-3 charge density wave (CDW) state from 0.020 K - 10 K and magnetic fields to 35 T using torque magnetometry. The angular dependence of the resulting frequencies is described. Effective masses were measured and the Dingle temperature was determined to be 0.74 K +/- 0.04 K. The observation of quantum oscillations within the alpha-3 CDW state gives new insight into the effect of the charge density waves on the Fermi surface. In addition we observed no signature of superconductivity in either transport or magnetization down to 0.020 K indicating the possibility of a pressure-induced quantum critical point that separates the superconducting dome from the normal CDW phase.Comment: 11 pages, 4 figures, 3 table

    Large-Mass Ultra-Low Noise Germanium Detectors: Performance and Applications in Neutrino and Astroparticle Physics

    Get PDF
    A new type of radiation detector, a p-type modified electrode germanium diode, is presented. The prototype displays, for the first time, a combination of features (mass, energy threshold and background expectation) required for a measurement of coherent neutrino-nucleus scattering in a nuclear reactor experiment. The device hybridizes the mass and energy resolution of a conventional HPGe coaxial gamma spectrometer with the low electronic noise and threshold of a small x-ray semiconductor detector, also displaying an intrinsic ability to distinguish multiple from single-site particle interactions. The present performance of the prototype and possible further improvements are discussed, as well as other applications for this new type of device in neutrino and astroparticle physics (double-beta decay, neutrino magnetic moment and WIMP searches).Comment: submitted to Phys. Rev.

    First Dark Matter Limits from a Large-Mass, Low-Background Superheated Droplet Detector

    Get PDF
    We report on the fabrication aspects and calibration of the first large active mass (∌15\sim15 g) modules of SIMPLE, a search for particle dark matter using Superheated Droplet Detectors (SDDs). While still limited by the statistical uncertainty of the small data sample on hand, the first weeks of operation in the new underground laboratory of Rustrel-Pays d'Apt already provide a sensitivity to axially-coupled Weakly Interacting Massive Particles (WIMPs) competitive with leading experiments, confirming SDDs as a convenient, low-cost alternative for WIMP detection.Comment: Final version, Phys. Rev. Lett. (in press

    Conditioning bounds for traveltime tomography in layered media

    Get PDF
    This paper revisits the problem of recovering a smooth, isotropic, layered wave speed profile from surface traveltime information. While it is classic knowledge that the diving (refracted) rays classically determine the wave speed in a weakly well-posed fashion via the Abel transform, we show in this paper that traveltimes of reflected rays do not contain enough information to recover the medium in a well-posed manner, regardless of the discretization. The counterpart of the Abel transform in the case of reflected rays is a Fredholm kernel of the first kind which is shown to have singular values that decay at least root-exponentially. Kinematically equivalent media are characterized in terms of a sequence of matching moments. This severe conditioning issue comes on top of the well-known rearrangement ambiguity due to low velocity zones. Numerical experiments in an ideal scenario show that a waveform-based model inversion code fits data accurately while converging to the wrong wave speed profile
    • 

    corecore