16 research outputs found

    Solar photocatalytic degradation of polyethylene terephthalate nanoplastics: Evaluation of the applicability of the TiO2/MIL-100(Fe) composite material

    Get PDF
    For the first time, TiO2/MIL-100(Fe) photocatalysts supported on perlite mineral particles prepared by the solvothermal/microwave methods and post-annealing technique were tested in the degradation of polyethylene terephthalate nanoplastics (PET NPs). Powder X-ray diffraction, Fourier transform infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy, X-ray photoelectron spectroscopy, UV–vis diffuse reflectance spectroscopy, N2 physisorption, photoluminescence emission spectroscopy, photocurrent response, and electrochemical impedance spectroscopy were used to characterize the as-prepared materials. The response surface methodology approach was used to study the effects: pH of the NPs suspension and incorporated amount of MIL-100(Fe) on the TiO2/MIL-100(Fe) catalyst to optimize the photocatalytic degradation of the PET NPs under simulated solar light. The degradation of the PET NPs was evaluated by measuring turbidity and carbonyl index (FTIR) changes. The total organic carbon (TOC) in the solution during the degradation of the PET NPs was assessed to measure NPs oxidation into water-soluble degradation by-products. The active species involved in the photocatalytic degradation of PET NPs by the TiO2/MIL-100(Fe) composite was further examined based on trapping experiments. The use of 12.5 wt% TiO2/MIL-100(Fe) catalyst showed improved photocatalytic efficacy in the oxidation of PET NPs at pH 3 under simulated sunlight compared to bare TiO2. The increase in the carbonyl index (CI = 0.99), the reduction in the turbidity ratio (0.454), and the increase in the content of TOC released (3.00 mg/L) were possible with 12.5 wt% TiO2/MIL-100(Fe) material. In contrast, the PET NPs were slowly degraded by TiO2-based photocatalysis (CI = 0.96, turbidity ratio = 0.539, released TOC = 2.12 mg/L). The mesoporous TiO2/MIL-100(Fe) composites with high specific surface area, capacity to absorb visible light, and effective separation of photogenerated electron-hole charges clearly demonstrated the enhancement of the photocatalytic performance in the PET NPs degradation under simulated solar light

    Corrosion resistance of anodic layers grown on 304L stainless steel at different anodizing times and stirring speeds

    Get PDF
    Different chemical and physical treatments have been used to improve the properties and functionalities of steels. Anodizing is one of the most promising treatments, due to its versatility and easy industrial implementation. It allows the growth of nanoestructured oxide films with interesting properties able to be employed in different industrial sectors. The present work studies the influence of the anodizing time (15, 30, 45 and 60 min), as well as the stirring speed (0, 200, 400, and 600 rpm), on the morphology and the corrosion resistance of the anodic layers grown in 304L stainless steel. The anodic layers were characterized morphologically, compositionally, and electrochemically, in order to determine the influence of the anodization parameters on their corrosion behavior in a 0.6 mol L-1 NaCl solution. The results show that at 45 and 60 min anodizing times, the formation of two microstructures is favored, associated with the collapse of the nanoporous structures at the metal-oxide interphace. However, both the stirring speed and the anodizing time have a negligeable effect on the corrosion behavior of the anodized 304L SS samples, since their electrochemical values are similar to those of the non-anodized ones

    Highly reflective engobes for ink-jet printed coloured porcelain stoneware tiles (CO-2:L05)

    No full text
    Ink-jet decoration is a technology suitable for designing ceramic tiles with solar reflectance (SR) properties. SR is the ratio between the solar energy reflected by a surface and the total incident energy. If incorporated into the cities' building envelope, solar reflective tiles mitigate the Urban Heat Island (UHI) phenomenon, which makes urban centres hotter than rural areas. Even if many efforts have been conducted to develop solar reflective surfaces, little research has been conducted for the development of coloured tiles suitable to be fabricated by ink-jet technology, where the inks tend to counteract the effect of the reflective engobes. To overcome such an issue, the fabrication of solar reflective ink-jet decorated tiles using a reflective engobe was investigated. The engobe was prepared using an industrial CZAS (CaO–ZrO2–Al2O3–SiO2) frit and a ZrSiO4 pigment. The engobe prepared with such frit presented a high SR value (0.918 ± 0.002) and was able to develop ink-jet printed coloured tiles (cool colors) using both white and red porcelain stoneware supports. Overall, it was found that using high engobe thicknesses, white porcelain stoneware supports, and light colour inks allows the fabrication of cool color ink-jet printed tiles. Most of those tiles present solar reflective properties higher than those reported in previous works, even for dark inks that usually tend to counteract the effect of solar reflective engobes

    Solar reflective ink-jet printed porcelain stoneware tiles as an alternative for Urban Heat Island mitigation

    No full text
    Digital ink-jet printing is a decoration system for ceramic tiles that requires the application of engobes with high whiteness and opacity, characteristics that can be used to design solar reflective ink-jet decorated tiles. These materials can help to mitigate Urban Heat Island (UHI) phenomenon. Here, the fabrication of ink-jet printed solar reflective tiles using an engobe with high solar reflectance was investigated. Two printing modalities (binary (BIN) and grayscale (GS)), five printing intensities, and four colours were tested. It was found that some of the prepared tiles can be used for mitigating the UHI phenomenon. The solar reflective properties were mainly derived from the reflective engobe, and in some grade, from the mineral composition of the inks. The colour and roughness measurements revealed that the GS modality could prepare ink-jet decorated tiles with good solar reflective properties with a smaller quantity of inks and good soiling resistance

    First insights into photocatalytic degradation of HDPE and LDPE microplastics by a mesoporous N-TiO2 coating: Effect of size and shape of microplastics

    No full text
    Microplastics (MPs), which are small plastic debris of ≤5 mm size, are polluting the oceans with negative consequences for their biota. In this work, visible-light photocatalysis of high-density polyethylene (HDPE) and low-density polyethylene (LDPE) MPs in aqueous medium using a mesoporous N-TiO2 coating is proposed as an alternative for fighting MP pollution. Spherical primary HDPE MPs were extracted from commercially available facial scrubs, while film-shaped secondary LDPE MPs were obtained from a plastic bag. For each plastic, two different sizes were tested. Degradation was measured by mass-loss and carbonyl-index (CI) calculation. The results obtained reveal that the photocatalytic degradation of HDPE and LDPE MPs using an N-TiO2 coating was affected by the size and shape of the MPs. Smaller MPs led to higher degradation, while film-shaped MPs led to lower degradation that was related to a poorly illuminated and oxygenated reaction medium. These results set the basis for further investigation on the on the design of more effective photocatalytic-reaction systems for decreasing MP inputs to the environment

    The role of the reactive species involved in the photocatalytic degradation of hdpe microplastics using c,n-tio2 powders

    No full text
    Microplastics (MPs) are distributed in a wide range of aquatic and terrestrial ecosystems throughout the planet. They are known to adsorb hazardous substances and can transfer them across the trophic web. To eliminate MPs pollution in an environmentally friendly process, we propose using a photocatalytic process that can easily be implemented in wastewater treatment plants (WWTPs). As photocatalysis involves the formation of reactive species such as holes (h+), electrons (e−), hydroxyl (OH•), and superoxide ion (O2•−) radicals, it is imperative to determine the role of those species in the degradation process to design an effective photocatalytic system. However, for MPs, this information is limited in the literature. Therefore, we present such reactive species’ role in the degradation of high-density polyethylene (HDPE) MPs using C,N-TiO2. Tert-butanol, isopropyl alcohol (IPA), Tiron, and Cu(NO3)2 were confirmed as adequate OH•, h+, O2•− and e− scavengers. These results revealed for the first time that the formation of free OH• through the pathways involving the photogenerated e− plays an essential role in the MPs’ degradation. Furthermore, the degradation behaviors observed when h+ and O2•− were removed from the reaction system suggest that these species can also perform the initiating step of degradation
    corecore