105 research outputs found
PEN experiment: a precise measurement of the pi+ -> e+ nu decay branching fraction
A new measurement of , the decay
branching ratio, is currently under way at the Paul Scherrer Institute. The
present experimental result on constitutes the most accurate test
of lepton universality available. The accuracy, however, still lags behind the
theoretical precision by over an order of magnitude. Because of the large
helicity suppression of the decay, its branching ratio is
susceptible to significant contributions from new physics, making this decay a
particularly suitable subject of study.Comment: 4 pages, 3 figures, talk given at the Tenth Conference on the
Intersections of Particle and Nuclear Physics (CIPANP 2009), La Jolla/San
Diego, CA, 26-31 May 2009; to appear in Proceedings to be published by the
American Institute of Physic
PEN: a low energy test of lepton universality
Allowed charged meson decays are characterized by simple dynamics, few
available decay channels, mainly into leptons, and extremely well controlled
radiative and loop corrections. In that sense, pion decays represent a
veritable triumph of the standard model (SM) of elementary particles and
interactions. This relative theoretical simplicity makes charged pion decays a
sensitive means for testing the underlying symmetries and the universality of
weak fermion couplings, as well as for studying pion structure and chiral
dynamics. Even after considerable recent improvements, experimental precision
is lagging far behind that of the theoretical description for pion decays. We
review the current state of experimental study of the pion electronic decay
, or , where the
indicates inclusion and explicit treatment of radiative decay events. We
briefly review the limits on non-SM processes arising from the present level of
experimental precision in decays. Focusing on the PEN
experiment at the Paul Scherrer Institute (PSI), Switzerland, we examine the
prospects for further improvement in the near term.Comment: 11 pages, 5 figures; paper presented at the XIII International
Conference on Heavy Quarks and Leptons, 22-27 May 2016, Blacksburg, Virginia,
US
The Nab Experiment: A Precision Measurement of Unpolarized Neutron Beta Decay
Neutron beta decay is one of the most fundamental processes in nuclear
physics and provides sensitive means to uncover the details of the weak
interaction. Neutron beta decay can evaluate the ratio of axial-vector to
vector coupling constants in the standard model, , through
multiple decay correlations. The Nab experiment will carry out measurements of
the electron-neutrino correlation parameter with a precision of and the Fierz interference term to
in unpolarized free neutron beta decay. These results, along with a more
precise measurement of the neutron lifetime, aim to deliver an independent
determination of the ratio with a precision of that will allow an evaluation of and sensitively
test CKM unitarity, independent of nuclear models. Nab utilizes a novel, long
asymmetric spectrometer that guides the decay electron and proton to two large
area silicon detectors in order to precisely determine the electron energy and
an estimation of the proton momentum from the proton time of flight. The Nab
spectrometer is being commissioned at the Fundamental Neutron Physics Beamline
at the Spallation Neutron Source at Oak Ridge National Lab. We present an
overview of the Nab experiment and recent updates on the spectrometer,
analysis, and systematic effects.Comment: Presented at PPNS201
- …
