18,860 research outputs found

    Effect of the Gribov horizon on the Polyakov loop and vice versa

    Get PDF
    We consider finite temperature SU(2) gauge theory in the continuum formulation, which necessitates the choice of a gauge fixing. Choosing the Landau gauge, the existing gauge copies are taken into account by means of the Gribov-Zwanziger (GZ) quantization scheme, which entails the introduction of a dynamical mass scale (Gribov mass) directly influencing the Green functions of the theory. Here, we determine simultaneously the Polyakov loop (vacuum expectation value) and Gribov mass in terms of temperature, by minimizing the vacuum energy w.r.t. the Polyakov loop parameter and solving the Gribov gap equation. Inspired by the Casimir energy-style of computation, we illustrate the usage of Zeta function regularization in finite temperature calculations. Our main result is that the Gribov mass directly feels the deconfinement transition, visible from a cusp occurring at the same temperature where the Polyakov loop becomes nonzero. In this exploratory work we mainly restrict ourselves to the original Gribov-Zwanziger quantization procedure in order to illustrate the approach and the potential direct link between the vacuum structure of the theory (dynamical mass scales) and (de)confinement. We also present a first look at the critical temperature obtained from the Refined Gribov-Zwanziger approach. Finally, a particular problem for the pressure at low temperatures is reported.Comment: 19 pages, 8 .pdf figures. v2: extended section 3 + extra references; version accepted for publication in EPJ

    Double non-perturbative gluon exchange: an update on the soft Pomeron contribution to pp scattering

    Get PDF
    We employ a set of recent, theoretically motivated, fits to non-perturbative unquenched gluon propagators to check in how far double gluon exchange can be used to describe the soft sector of pp scattering data (total and differential cross section). In particular, we use the refined Gribov--Zwanziger gluon propagator (as arising from dealing with the Gribov gauge fixing ambiguity) and the massive Cornwall-type gluon propagator (as motivated from Dyson-Schwinger equations) in conjunction with a perturbative quark-gluon vertex, next to a model based on the non-perturbative quark-gluon Maris-Tandy vertex, popular from Bethe-Salpeter descriptions of hadronic bound states. We compare the cross sections arising from these models with "older" ISR and more recent TOTEM and ATLAS data. The lower the value of total energy \sqrt{s}, the better the results appear to be.Comment: 14 pages, 8 .pdf figures. To appear in Phys.Rev.

    Unconventional and conventional quantum criticalities in CeRh0.58_{0.58}Ir0.42_{0.42}In5_5

    Full text link
    An appropriate description of the state of matter that appears as a second order phase transition is tuned toward zero temperature, {\it viz.} quantum-critical point (QCP), poses fundamental and still not fully answered questions. Experiments are needed both to test basic conclusions and to guide further refinement of theoretical models. Here, charge and entropy transport properties as well as AC specific heat of the heavy-fermion compound CeRh0.58_{0.58}Ir0.42_{0.42}In5_5, measured as a function of pressure, reveal two qualitatively different QCPs in a {\it single} material driven by a {\it single} non-symmetry-breaking tuning parameter. A discontinuous sign-change jump in thermopower suggests an unconventional QCP at pc1p_{c1} accompanied by an abrupt Fermi-surface reconstruction that is followed by a conventional spin-density-wave critical point at pc2p_{c2} across which the Fermi surface evolves smoothly to a heavy Fermi-liquid state. These experiments are consistent with some theoretical predictions, including the sequence of critical points and the temperature dependence of the thermopower in their vicinity.Comment: 21+3 pages, 4+2 figures. Change the title, figures et a

    Star formation in the giant HII regions of M101

    Get PDF
    The molecular components of three giant HII regions (NGC 5461, NGC 5462, NGC 5471) in the galaxy M101 are investigated with new observations from the James Clerk Maxwell Telescope, the NRAO 12-meter, and the Owens Valley millimeter array. Of the three HII regions, only NGC 5461 had previously been detected in CO emission. We calculate preliminary values for the molecular mass of the GMCs in NGC 5461 by assuming a CO-to-H_2 factor (X factor) and then compare these values with the virial masses. We conclude that the data in this paper demonstrate for the first time that the value of X may decrease in regions with intense star formation. The molecular mass for the association of clouds in NGC 5461 is approximately 3x10^7 Mo and is accompanied by 1-2 times as much atomic mass. The observed CO emission in NGC 5461 is an order of magnitude stronger than in NGC 5462, while it was not possible to detect molecular gas toward NGC 5471 with the JCMT. An even larger ratio of atomic to molecular gas in NGC 5471 was observed, which might be attributed to efficient conversion of molecular to atomic gas. The masses of the individual clouds in NGC 5461, which are gravitationally bound, cover a range of (2-8) x 10^5 Mo, comparable with the masses of Galactic giant molecular clouds (GMCs). Higher star forming efficiencies, and not massive clouds, appear to be the prerequisite for the formation of the large number of stars whose radiation is required to produce the giant HII regions in M101.Comment: 32 pages, 5 figures, accepted for publication in the Astrophysical Journa
    corecore