53,321 research outputs found

    Nonlinear dynamic analysis of shells of revolution by matrix displacement method

    Get PDF
    Nonlinear dynamic analysis of shells of revolution by matrix displacement metho

    Wilson-t'Hooft Loops in Finite-Temperature Non-commutative Dipole Field Theory from Dual Supergravity

    Full text link
    We first study the temporal Wilson loop in the finite-temperature non-commutative dipole field theory from the string/gauge correspondence. The associated dual supergravity background is constructed from the near-horizon geometry of near-extremal D-branes, after applying T-duality and smeared twist. We investigate the string configuration therein and find that while the temperature produces a maximum distance LmaxL_{max} in the interquark distance the dipole in there could produce a minimum distance LminL_{min}. The quark boundary pair therefore could be found only if their distance is between LminL_{min} and LmaxL_{max}. We also show that, beyond a critical temperature the quark pair becomes totally free due to screening by thermal bath. We next study the spatial Wilson loop and find the confining nature in the zero temperature 3D and 4D non-supersymmetry dipole gauge theory. The string tension of the linear confinement potential is obtained and found to be a decreasing function of the dipole field. We also investigate the associated t'Hooft loop and determine the corresponding monopole anti-monopole potential. The conventional screening of magnetic charge which indicates the confinement of the electric charge is replaced by a strong repulsive however. Finally, we show that the dual string which is rotating along the dipole deformed S5S^5 will behave as a static one without dipole field, which has no minimum distance and has larger energy than a static one with dipole field. We discuss the phase transition between these string solutions.Comment: Latex, 22 pages, 8 figures, add several comment

    A data acquisition and handling system for the measurement of radial plasma transport rates

    Get PDF
    A system which allows the transfer of experimental data from one or more transient recorders to a digital computer, the entry of calibration data and the entry of archival data is described. The overall approach is discussed and illustrated in detail

    EXIST: Mission Design Concept and Technology Program

    Get PDF
    The Energetic X-ray Imaging Survey Telescope (EXIST) is a proposed very large area coded aperture telescope array, incorporating 8m^2 of pixellated Cd-Zn-Te (CZT) detectors, to conduct a full-sky imaging and temporal hard x-ray (10-600 keV) survey each 95min orbit. With a sensitivity (5sigma, 1yr) of ~0.05mCrab (10-150 keV), it will extend the ROSAT soft x-ray (0.5-2.5keV) and proposed ROSITA medium x-ray (2-10 keV) surveys into the hard x-ray band and enable identification and study of sources ~10-20X fainter than with the ~15-100keV survey planned for the upcoming Swift mission. At ~100-600 keV, the ~1mCrab sensitivity is 300X that achieved in the only previous (HEAO-A4, non-imaging) all-sky survey. EXIST will address a broad range of key science objectives: from obscured AGN and surveys for black holes on all scales, which constrain the accretion history of the universe, to the highest sensitivity and resolution studies of gamma-ray bursts it will conduct as the Next Generation Gamma-Ray Burst mission. We summarize the science objectives and mission drivers, and the results of a mission design study for implementation as a free flyer mission, with Delta IV launch. Key issues affecting the telescope and detector design are discussed, and a summary of some of the current design concepts being studied in support of EXIST is presented for the wide-field but high resolution coded aperture imaging and very large area array of imaging CZT detectors. Overall mission design is summarized, and technology development needs and a development program are outlined which would enable the launch of EXIST by the end of the decade, as recommended by the NAS/NRC Decadal Survey.Comment: 14 pages, 8 figures, 2 tables. PDF file only. Presented at SPIE (Aug. 2002) and to appear in Proc. SPIE, vol. 485

    Holographic Estimate of Oblique Corrections for Technicolor

    Full text link
    We study the oblique corrections to the electroweak interaction in the holographic model of technicolor theories. The oblique S parameter is expressed in terms of a solution to the equations of motion for the AdS bulk gauge fields. By analyzing the solution, we establish a rigorous proof that the S parameter is positive and is reduced by walking. We also present the precise numerical values for the S parameter of various technicolor models by solving the equations numerically.Comment: 10 pages, 1 figure, RevTeX 4.0: published version. references adde

    Spin Chain with Magnetic Field and Spinning String in Magnetic Field Background

    Full text link
    We analyze the fast-moving string in the magnetic Melvin field background and find that the associated effective Lagrangian of string sigma model describes the spin chain model with external magnetic field. The spin vector in the spin chain has been properly deformed and is living on the deformed two-sphere or deformed two-dimensional hyperboloid, depending on the direction around which the string is spinning. We describe in detail the characters of spin deformation and, in particular, see that this is a general property for a string moving in a class of deformed background.Comment: Latex 10 pages, add a figure and a section, change titl

    Non-Fermi liquids from holography

    Full text link
    We report on a potentially new class of non-Fermi liquids in (2+1)-dimensions. They are identified via the response functions of composite fermionic operators in a class of strongly interacting quantum field theories at finite density, computed using the AdS/CFT correspondence. We find strong evidence of Fermi surfaces: gapless fermionic excitations at discrete shells in momentum space. The spectral weight exhibits novel phenomena, including particle-hole asymmetry, discrete scale invariance, and scaling behavior consistent with that of a critical Fermi surface postulated by Senthil.Comment: 10 pages, 16 figures. v2: added references, corrected figures, some minor changes. v3: figure 5 replace
    • …
    corecore