1,058 research outputs found

    Determining ethylene group disorder levels in κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br

    Get PDF
    We present a detailed structural investigation of the organic superconductor κ\kappa-(BEDT-TTF)2_2Cu[N(CN)2_2]Br at temperatures TT from 9 to 300 K. Anomalies in the TT dependence of the lattice parameters are associated with a glass-like transition previously reported at TgT_g = 77 K. From structure refinements at 9, 100 and 300 K, the orthorhombic crystalline symmetry, space group {\it Pnma}, is established at all temperatures. Further, we extract the TT dependence of the occupation factor of the eclipsed conformation of the terminal ethylene groups of the BEDT-TTF molecule. At 300 K, we find 67(2) %, with an increase to 97(3) % at 9 K. We conclude that the glass-like transition is not primarily caused by configurational freezing-out of the ethylene groups

    Long-range nonlocal flow of vortices in narrow superconducting channels

    Get PDF
    We report a new nonlocal effect in vortex matter, where an electric current confined to a small region of a long and sufficiently narrow superconducting wire causes vortex flow at distances hundreds of inter-vortex separations away. The observed remote traffic of vortices is attributed to a very efficient transfer of a local strain through the one-dimensional vortex lattice, even in the presence of disorder. We also observe mesoscopic fluctuations in the nonlocal vortex flow, which arise due to "traffic jams" when vortex arrangements do not match a local geometry of a superconducting channel.Comment: a slightly longer version of a tentatively accepted PR

    Five Intermediate-Period Planets from the N2K Sample

    Get PDF
    We report the detection of five Jovian mass planets orbiting high metallicity stars. Four of these stars were first observed as part of the N2K program and exhibited low RMS velocity scatter after three consecutive observations. However, follow-up observations over the last three years now reveal the presence of longer period planets with orbital periods ranging from 21 days to a few years. HD 11506 is a G0V star with a planet of \msini = 4.74 \mjup in a 3.85 year orbit. HD 17156 is a G0V star with a 3.12 \mjup planet in a 21.2 day orbit. The eccentricity of this orbit is 0.67, one of the highest known for a planet with a relatively short period. The orbital period for this planet places it in a region of parameter space where relatively few planets have been detected. HD 125612 is a G3V star with a planet of \msini = 3.5 \mjup in a 1.4 year orbit. HD 170469 is a G5IV star with a planet of \msini = 0.67 \mjup in a 3.13 year orbit. HD 231701 is an F8V star with planet of 1.08 \mjup in a 142 day orbit. All of these stars have supersolar metallicity. Three of the five stars were observed photometrically but showed no evidence of brightness variability. A transit search conducted for HD 17156 was negative but covered only 25% of the search space and so is not conclusive.Comment: 13 pages, 9 figures, accepted ApJ Resubmitted here with some additional data, modified Keplerian orbit

    The effect of an in-plane magnetic field on the interlayer transport of quasiparticles in layered superconductors

    Full text link
    We consider the quasiparticle c-axis conductivity in highly anisotropic layered compounds in the presence of the magnetic field parallel to the layers. We show that at low temperatures the quasiparticle interlayer conductivity depends strongly on the orientation of the in-plane magnetic field if the excitation gap has nodes on the Fermi surface. Thus measurements of the angle-dependent c-axis (out-of-plane) magnetoresistance, as a function of the orientation of the magnetic field in the layers, provide information on the momentum dependence of the superconducting gap (or pseudogap) on the Fermi surface. Clean and highly anisotropic layered superconductors seem to be the best candidates for probing the existence and location of the nodes on the Fermi surface.Comment: 4 pages RevTeX, including 2 PostScript figures, to appear in Phys. Rev. Let

    A Substellar Companion to the Intermediate-Mass Giant 11 Com

    Full text link
    We report the detection of a substellar companion orbiting the intermediate-mass giant star 11 Com (G8 III). Precise Doppler measurements of the star from Xinglong station and Okayama Astrophysical Observatory (OAO) revealed Keplerian velocity variations with an orbital period of 326.03 +/- 0.32 days, a semiamplitude of 302.8 +/- 2.6 m/s, and an eccentricity of 0.231 +/- 0.005. Adopting a stellar mass of 2.7 +/- 0.3 M_solar, the minimum mass of the companion is 19.4 +/- 1.5 M_Jup, well above the deuterium burning limit, and the semimajor axis is 1.29 +/- 0.05 AU. This is the first result from the joint planet search program between China and Japan aiming at revealing statistics of substellar companions around intermediate-mass giants. 11 Com b emerged from 300 targets of the planet search program at OAO. The current detection rate of a brown dwarf candidate seems to be comparable to that around solar-type stars within orbital separations of \sim3 AU.Comment: 19 pages, 4 figures, accepted by Ap

    The N2K Consortium. II. A Transiting Hot Saturn Around HD 149026 With a Large Dense Core

    Get PDF
    Doppler measurements from Subaru and Keck have revealed radial velocity variations in the V=8.15, G0IV star HD 149026 consistent with a Saturn-Mass planet in a 2.8766 day orbit. Photometric observations at Fairborn Observatory have detected three complete transit events with depths of 0.003 mag at the predicted times of conjunction. HD 149026 is now the second brightest star with a transiting extrasolar planet. The mass of the star, based on interpolation of stellar evolutionary models, is 1.3 +/- 0.1 solar masses; together with the Doppler amplitude, K=43.3 m s^-1, we derive a planet mass Msin(i)=0.36 Mjup, and orbital radius of 0.042 AU. HD 149026 is chromospherically inactive and metal-rich with spectroscopically derived [Fe/H]=+0.36, Teff=6147 K, log g=4.26 and vsin(i)=6.0 km s^-1. Based on Teff and the stellar luminosity of 2.72 Lsun, we derive a stellar radius of 1.45 Rsun. Modeling of the three photometric transits provides an orbital inclination of 85.3 +/- 1.0 degrees and (including the uncertainty in the stellar radius) a planet radius of 0.725 +/- 0.05 Rjup. Models for this planet mass and radius suggest the presence of a ~67 Mearth core composed of elements heavier than hydrogen and helium. This substantial planet core would be difficult to construct by gravitational instability.Comment: 25 pages, 5 figures, accepted by the Astrophysical Journa

    Thermal fluctuations and vortex melting in the classical superconductor Nb3Sn from high-resolution specific-heat measurements

    Full text link
    The range of critical thermal fluctuations in classical bulk superconductors is extremely small and especially in low fields hardly experimentally inaccessible. With a new type of calorimeter we have been able to resolve a small lambda anomaly within a narrow temperature range around the Hc2 line. We show that the evolution of the anomaly as a function of magnetic field follows scaling laws expected in the presence of critical fluctuations. The lower onset of the fluctuation regime shows many characteristics of a continuous solid-to-liquid transition in the vortex matter. It can be driven into a first-order vortex melting transition by a small AC field which helps the vortex matter to reach equilibrium.Comment: 12 pages, 5 figures new extended version, more figures added, more detailed discussion about the vortex melting transitio

    Methylation status of oestrogen receptor-α gene promoter sequences in human ovarian epithelial cell lines

    Get PDF
    We have determined the methylation status of the CpG island of the oestrogen receptor α gene in seven human ovarian cell lines. Cell lines expressing oestrogen receptor α showed no evidence of hypermethylation. In three of four cell lines that produced no detectable oestrogen receptor α protein, hypermethylation was observed at the NotI site of the CpG island. These results indicate that aberrant hypermethylation may be responsible for a significant proportion of epithelial ovarian tumours in which oestrogen receptor α expression is lost

    Structural instability associated with the tilting of CuO6 octahedra in La2-xSrxCuO4

    Full text link
    Comprehensive inelastic neutron-scattering measurements were performed to study the soft optical phonons in La2-xSrxCuO4 at x=0.10, 0.12 and 0.18. We found at x=0.18 that the softening of Z-point phonon, suggesting incipient structural transition from the low-temperature orthorhombic (LTO) to low-temperature tetragonal (LTT) phase, breaks at Tc, which is consistent with the previous report by Lee et al. for the optimally doped x=0.15 sample. As for x=0.10 and 0.12, on the other hand, the softening continues even below Tc. It is thus clarified that the breaking of soft phonon is characteristic of La2-xSrxCuO4 in the optimally and overdoped regions. In the course of studying the soft phonons, we discovered that a central peak remains above the LTO to high-temperature tetragonal (HTT) phase transition at Ts1 and splits into incommensurate components along the (1 1 0)HTT direction at higher temperatures. This is a common feature for both x=0.12 and 0.18 and their temperature dependences of the splitting 2d can be scaled by using a renormalized temperature T/Ts1. In the high temperature limit, d saturates around d ~ 0.12 r.l.u., which value is close to the splitting of incommensurate magnetic signals. This implies that the incipient lattice modulation starts appearing at very high temperature. Details of this modulation and its relations with other properties are, however, not yet clarified.Comment: 7 pages, 5 eps figure

    Laser ablation of abnormal neurological tissue using robotic neuroblate system (LAANTERN): Procedural safety and hospitalization

    Get PDF
    BACKGROUND: Stereotactic laser ablation (SLA) has demonstrated potential utility for a spectrum of difficult to treat neurosurgical pathologies in multiple small and/or retrospective single-institutional series. Here, we present the safety profile of SLA of intracranial lesions from the Laser Ablation of Abnormal Neurological Tissue using Robotic NeuroBlate System (LAANTERN; Monteris Medical) multi-institutional, international prospective observational registry. OBJECTIVE: To determine the procedural safety of SLA for intracranial lesions. METHODS: Prospective procedural safety and hospitalization data from the first 100 treated LAANTERN patients was collected and analyzed. RESULTS: Mean age and baseline Karnofsky Performance Status (KPS) were 51(± 17) yr and 83(± 15), respectively. In total, 81.2% of patients had undergone prior surgical or radiation treatment. Most patients had a single lesion (79%) ablated through 1 burr hole (1.2 ± 0.7 per patient), immediately following a lesion biopsy. In total, \u3e90% of the lesion was ablated in 72% of treated lesions. Average total procedural time was 188.2 ± 69.6 min, and average blood loss was 17.7 ± 55.6 ccs. The average length of intensive care unit (ICU) and hospital stays before discharge were 38.1 ± 62.7 h and 61.1 ± 87.2 h, respectively. There were 5 adverse events (AEs) attributable to SLA (5/100; 5%). After the procedure, 84.8% of patients were discharged home. There was 1 mortality within 30 d of the procedure (1/100; 1%), which was not attributable to SLA. CONCLUSION: SLA is a safe, minimally invasive procedure with favorable postprocedural ICU and hospital utilization profiles
    corecore