68 research outputs found

    Psychosocial and contextual correlates of opioid overdose risk among drug users in St. Petersburg, Russia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Opioid overdose in Russia is a problem that has grown more severe as heroin abuse expanded over the past decade, yet few studies have explored it in detail. In order to gain a clearer understanding of the situation, 60 drug users, both in and out of drug treatment in St. Petersburg, were interviewed concerning their overdose experience and knowledge about overdose recognition and prevention.</p> <p>Methods</p> <p>Using a semi-structured interview, we sought to identify and describe local attitudes, knowledge and experience (both self-sustained and witnessed) of opioid overdose. Bi-variate and multiple logistic regressions were performed in order to identify the relationship between overdose experience and sociodemographic factors, risk behaviors, and clinical psychiatric measures.</p> <p>Results</p> <p>We found that having experienced or witnessed an opioid overdose within the previous year was common, overdose knowledge was generally high, but nearly half the participants reported low self-efficacy for effectively intervening in an overdose situation. In bivariate analyses, self-reported family problems (i.e., perceived problematic family interactions) were positively associated with both experiencing (t<sub>56 </sub>= 2.49; p < 0.05) and with witnessing a greater number of overdoses in the previous year (rho<sub>s </sub>= 0.31; p < 0.05). Having previously overdosed [Adjusted Risk Ratio (ARR) 1.7, 95% Confidence Interval (CI) 1.1–2.6] and higher SCL-90-R somatization scores (ARR 1.2, 95% CI 0.96 – 1.5) were independently associated in multivariable analyses with self-sustained overdose experience in the past year. Greater perceived likelihood of experiencing a future overdose and concern about medical problems were independently associated with witnessing a higher number of overdoses within the previous year. Over two thirds of the participants expressed interest in receiving training in overdose prevention and response.</p> <p>Conclusion</p> <p>Opioid overdose experience is very common among drug users in St. Petersburg, Russia, and interest in receiving training for overdose recognition and prevention was high. Future research should target the development of effective overdose recognition and prevention interventions, especially ones that include naloxone distribution and involve drug users' families.</p

    Brainstem Respiratory Oscillators Develop Independently of Neuronal Migration Defects in the Wnt/PCP Mouse Mutant looptail

    Get PDF
    The proper development and maturation of neuronal circuits require precise migration of component neurons from their birthplace (germinal zone) to their final positions. Little is known about the effects of aberrant neuronal position on the functioning of organized neuronal groups, especially in mammals. Here, we investigated the formation and properties of brainstem respiratory neurons in looptail (Lp) mutant mice in which facial motor neurons closely apposed to some respiratory neurons fail to migrate due to loss of function of the Wnt/Planar Cell Polarity (PCP) protein Vangl2. Using calcium imaging and immunostaining on embryonic hindbrain preparations, we found that respiratory neurons constituting the embryonic parafacial oscillator (e-pF) settled at the ventral surface of the medulla in Vangl2Lp/+ and Vangl2Lp/Lp embryos despite the failure of tangential migration of its normally adjacent facial motor nucleus. Anatomically, the e-pF neurons were displaced medially in Lp/+ embryos and rostro-medially Lp/Lp embryos. Pharmacological treatments showed that the e-pF oscillator exhibited characteristic network properties in both Lp/+ and Lp/Lp embryos. Furthermore, using hindbrain slices, we found that the other respiratory oscillator, the preBötzinger complex, was also anatomically and functionally established in Lp mutants. Importantly, the displaced e-pF oscillator established functional connections with the preBötC oscillator in Lp/+ mutants. Our data highlight the robustness of the developmental processes that assemble the neuronal networks mediating an essential physiological function

    PAX2 Regulates ADAM10 Expression and Mediates Anchorage-Independent Cell Growth of Melanoma Cells

    Get PDF
    PAX transcription factors play an important role during development and carcinogenesis. In this study, we investigated PAX2 protein levels in melanocytes and melanoma cells by Western Blot and immunofluorescence analysis and characterized the role of PAX2 in the pathogenesis of melanoma. In vitro we found weak PAX2 protein expression in keratinocytes and melanocytes. Compared to melanocytes increased PAX2 protein levels were detectable in melanoma cell lines. Interestingly, in tissue sections of melanoma patients nuclear PAX2 expression strongly correlated with nuclear atypia and the degree of prominent nucleoli, indicating an association of PAX2 with a more atypical cellular phenotype. In addition, with chromatin immunoprecipitation assay, PAX2 overexpression and PAX2 siRNA we present compelling evidence that PAX2 can regulate ADAM10 expression, a metalloproteinase known to play important roles in melanoma metastasis. In human tissue samples we found co-expression of PAX2 and ADAM10 in melanocytes of benign nevi and in melanoma cells of patients with malignant melanoma. Importantly, the downregulation of PAX2 by specific siRNA inhibited the anchorage independent cell growth and decreased the migratory and invasive capacity of melanoma cells. Furthermore, the downregulation of PAX2 abrogated the chemoresistance of melanoma cells against cisplatin, indicating that PAX2 expression mediates cell survival and plays important roles during melanoma progression

    A hepatitis B virus causes chronic infections in equids worldwide

    Get PDF
    Preclinical testing of novel therapeutics for chronic hepatitis B (CHB) requires suitable animal models. Equids host homologs of hepatitis C virus (HCV). Because coinfections of hepatitis B virus (HBV) and HCV occur in humans, we screened 2,917 specimens from equids from five continents for HBV. We discovered a distinct HBV species (Equid HBV, EqHBV) in 3.2% of donkeys and zebras by PCR and antibodies against EqHBV in 5.4% of donkeys and zebras. Molecular, histopathological, and biochemical analyses revealed that infection patterns of EqHBV resembled those of HBV in humans, including hepatotropism, moderate liver damage, evolutionary stasis, and potential horizontal virus transmission. Naturally infected donkeys showed chronic infections resembling CHB with high viral loads of up to 2.6 × 109 mean copies per milliliter serum for >6 mo and weak antibody responses. Antibodies against Equid HCV were codetected in 26.5% of donkeys seropositive for EqHBV, corroborating susceptibility to both hepatitis viruses. Deltavirus pseudotypes carrying EqHBV surface proteins were unable to infect human cells via the HBV receptor NTCP (Na+/taurocholate cotransporting polypeptide), suggesting alternative viral entry mechanisms. Both HBV and EqHBV deltavirus pseudotypes infected primary horse hepatocytes in vitro, supporting a broad host range for EqHBV among equids and suggesting that horses might be suitable for EqHBV and HBV infections in vivo. Evolutionary analyses suggested that EqHBV originated in Africa several thousand years ago, commensurate with the domestication of donkeys. In sum, EqHBV naturally infects diverse equids and mimics HBV infection patterns. Equids provide a unique opportunity for preclinical testing of novel therapeutics for CHB and to investigate HBV/ HCV interplay upon coinfection

    Non-canonical Wnt signalling regulates scarring in biliary disease via the planar cell polarity receptors

    Get PDF
    The number of patients diagnosed with chronic bile duct disease is increasing and in most cases these diseases result in chronic ductular scarring, necessitating liver transplantation. The formation of ductular scaring affects liver function; however, scar-generating portal fibroblasts also provide important instructive signals to promote the proliferation and differentiation of biliary epithelial cells. Therefore, understanding whether we can reduce scar formation while maintaining a pro-regenerative microenvironment will be essential in developing treatments for biliary disease. Here, we describe how regenerating biliary epithelial cells express Wnt-Planar Cell Polarity signalling components following bile duct injury and promote the formation of ductular scars by upregulating pro-fibrogenic cytokines and positively regulating collagen-deposition. Inhibiting the production of Wnt-ligands reduces the amount of scar formed around the bile duct, without reducing the development of the pro-regenerative microenvironment required for ductular regeneration, demonstrating that scarring and regeneration can be uncoupled in adult biliary disease and regeneration

    Sfrp Controls Apicobasal Polarity and Oriented Cell Division in Developing Gut Epithelium

    Get PDF
    Epithelial tubular morphogenesis leading to alteration of organ shape has important physiological consequences. However, little is known regarding the mechanisms that govern epithelial tube morphogenesis. Here, we show that inactivation of Sfrp1 and Sfrp2 leads to reduction in fore-stomach length in mouse embryos, which is enhanced in the presence of the Sfrp5 mutation. In the mono-cell layer of fore-stomach epithelium, cell division is normally oriented along the cephalocaudal axis; in contrast, orientation diverges in the Sfrps-deficient fore-stomach. Cell growth and apoptosis are not affected in the Sfrps-deficient fore-stomach epithelium. Similarly, cell division orientation in fore-stomach epithelium diverges as a result of inactivation of either Stbm/Vangl2, an Fz/PCP component, or Wnt5a. These observations indicate that the oriented cell division, which is controlled by the Fz/PCP pathway, is one of essential components in fore-stomach morphogenesis. Additionally, the small intestine epithelium of Sfrps compound mutants fails to maintain proper apicobasal polarity; the defect was also observed in Wnt5a-inactivated small intestine. In relation to these findings, Sfrp1 physically interacts with Wnt5a and inhibits Wnt5a signaling. We propose that Sfrp regulation of Wnt5a signaling controls oriented cell division and apicobasal polarity in the epithelium of developing gut

    The dynamic cilium in human diseases

    Get PDF
    Cilia are specialized organelles protruding from the cell surface of almost all mammalian cells. They consist of a basal body, composed of two centrioles, and a protruding body, named the axoneme. Although the basic structure of all cilia is the same, numerous differences emerge in different cell types, suggesting diverse functions. In recent years many studies have elucidated the function of 9+0 primary cilia. The primary cilium acts as an antenna for the cell, and several important pathways such as Hedgehog, Wnt and planar cell polarity (PCP) are transduced through it. Many studies on animal models have revealed that during embryogenesis the primary cilium has an essential role in defining the correct patterning of the body. Cilia are composed of hundreds of proteins and the impairment or dysfunction of one protein alone can cause complete loss of cilia or the formation of abnormal cilia. Mutations in ciliary proteins cause ciliopathies which can affect many organs at different levels of severity and are characterized by a wide spectrum of phenotypes. Ciliary proteins can be mutated in more than one ciliopathy, suggesting an interaction between proteins. To date, little is known about the role of primary cilia in adult life and it is tempting to speculate about their role in the maintenance of adult organs. The state of the art in primary cilia studies reveals a very intricate role. Analysis of cilia-related pathways and of the different clinical phenotypes of ciliopathies helps to shed light on the function of these sophisticated organelles. The aim of this review is to evaluate the recent advances in cilia function and the molecular mechanisms at the basis of their activity

    Identification of Novel Pax8 Targets in FRTL-5 Thyroid Cells by Gene Silencing and Expression Microarray Analysis

    Get PDF
    The differentiation program of thyroid follicular cells (TFCs), by far the most abundant cell population of the thyroid gland, relies on the interplay between sequence-specific transcription factors and transcriptional coregulators with the basal transcriptional machinery of the cell. However, the molecular mechanisms leading to the fully differentiated thyrocyte are still the object of intense study. The transcription factor Pax8, a member of the Paired-box gene family, has been demonstrated to be a critical regulator required for proper development and differentiation of thyroid follicular cells. Despite being Pax8 well-characterized with respect to its role in regulating genes involved in thyroid differentiation, genomics approaches aiming at the identification of additional Pax8 targets are lacking and the biological pathways controlled by this transcription factor are largely unknown.To identify unique downstream targets of Pax8, we investigated the genome-wide effect of Pax8 silencing comparing the transcriptome of silenced versus normal differentiated FRTL-5 thyroid cells. In total, 2815 genes were found modulated 72 h after Pax8 RNAi, induced or repressed. Genes previously reported to be regulated by Pax8 in FRTL-5 cells were confirmed. In addition, novel targets genes involved in functional processes such as DNA replication, anion transport, kinase activity, apoptosis and cellular processes were newly identified. Transcriptome analysis highlighted that Pax8 is a key molecule for thyroid morphogenesis and differentiation.This is the first large-scale study aimed at the identification of new genes regulated by Pax8, a master regulator of thyroid development and differentiation. The biological pathways and target genes controlled by Pax8 will have considerable importance to understand thyroid disease progression as well as to set up novel therapeutic strategies

    Seroprevalence of Leptospira spp. in Horses in Israel

    No full text
    Leptospirosis has been reported in both humans and animals in Israel but has not been reported in horses. In 2018, an outbreak of Leptospira spp. serogroup Pomona was reported in humans and cattle in Israel. In horses, leptospirosis may cause equine recurrent uveitis (ERU). This report describes the first identification of Leptospira serogroup Pomona as the probable cause of ERU in horses in Israel, followed by an epidemiological investigation of equine exposure in the area. Serologic exposure to Leptospira was determined by microscopic agglutination test (MAT) using eight serovars. In 2017, serovar Pomona was identified in a mare with signs of ERU. Seven of thirteen horses from that farm were seropositive for serogroup Pomona, of which three had signs of ERU. During the same time period, 14/70 horses from three other farms were positive for serogroup Pomona. In 2015, two years prior to this diagnosis, 259 horses from 21 farms were sampled and one horse tested seropositive for serovar Icterohaemorrhagiae. In 2018, one year later, 337 horses were sampled on 29 farms, with none testing seropositive. Although horses are not considered a major host of Leptospira spp., it appears that horses may be infected, and clinically affected, in the course of an outbreak in other species. The identification of leptospirosis in stabled horses may impose a significant zoonotic risk to people
    corecore