74 research outputs found

    Infection of the malaria mosquito, Anopheles gambiae, with two species of entomopathogenic fungi: effects of concentration, co-formulation, exposure time and persistence

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Entomopathogenic fungi <it>Metarhizium anisopliae </it>and <it>Beauveria bassiana </it>isolates have been shown to infect and reduce the survival of mosquito vectors.</p> <p>Methods</p> <p>Here four different bioassays were conducted to study the effect of conidia concentration, co-formulation, exposure time and persistence of the isolates <it>M. anisopliae </it>ICIPE-30 and <it>B. bassiana </it>I93-925 on infection and survival rates of female <it>Anopheles gambiae sensu stricto</it>. Test concentrations and exposure times ranged between 1 × 10<sup>7 </sup>- 4 × 10<sup>10 </sup>conidia m<sup>-2 </sup>and 15 min - 6 h. In co-formulations, 2 × 10<sup>10 </sup>conidia m<sup>-2 </sup>of both fungus isolates were mixed at ratios of 4:1, 2:1, 1:1,1:0, 0:1, 1:2 and 1:4. To determine persistence, mosquitoes were exposed to surfaces treated 1, 14 or 28 d previously, with conidia concentrations of 2 × 10<sup>9</sup>, 2 × 10<sup>10 </sup>or 4 × 10<sup>10</sup>.</p> <p>Results</p> <p>Mosquito survival varied with conidia concentration; 2 × 10<sup>10 </sup>conidia m<sup>-2 </sup>was the concentration above which no further reductions in survival were detectable for both isolates of fungus. The survival of mosquitoes exposed to single and co-formulated treatments was similar and no synergistic or additive effects were observed. Mosquitoes were infected within 30 min and longer exposure times did not result in a more rapid killing effect. Fifteen min exposure still achieved considerable mortality rates (100% mortality by 14 d) of mosquitoes, but at lower speed than with 30 min exposure (100% mortality by 9 d). Conidia remained infective up to 28 d post-application but higher concentrations did not increase persistence.</p> <p>Conclusion</p> <p>Both fungus isolates are effective and persistent at low concentrations and short exposure times.</p

    A new bioassay method reveals pathogenicity of Metarhizium anisopliae and Beauveria bassiana against early stages of Capnodis tenebrionis (Coleoptera; Buprestidae)

    No full text
    We used a newly developed bioassay method to demonstrate for the Wrst time the potential of the entomopathogenic fungi Beauveria bassiana and Metarhizium anisopliae to be used for the control of neonate larvae of Capnodis tenebrionis, a major threat to stone-fruit orchards in several countries. Four B. bassiana and four M. anisopliae isolates were all pathogenic for neonate larvae of C. tenebrionis; mortality rates 10 days after inoculation by dipping in a suspension with 108 conidia/ml varied from 23.5% to 100%. Three of the four M. anisopliae isolates caused 100% mortality. In most cases, postmortem hyphal growth and sporulation of M. anisopliae or B. bassiana was observed covering the larvae in their galleries. The eight isolates were also evaluated for pathogenicity to C. tenebrionis eggs at the same dosage. Only two B. bassiana isolates caused signiWcant egg hatching reduction of 84.5% and 94.5%. Our results indicate that M. anisopliae and B. bassiana may be considered as promising for a new approach to prevent larval infestations by C. tenebrionis
    • 

    corecore