102 research outputs found

    Groundwater quality impacts from a full-scale integrated constructed wetland

    Get PDF
    The concept of integrated constructed wetlands (ICW) promotes in-situ soils to construct and line wetland cells. The integrity of soil material, however, may provide a potential pathway for contaminants to flow into the underlying groundwater. This study assessed the extent of groundwater quality deterioration due to the establishment of a full-scale ICW system treating domestic wastewater in Ireland. The ICW is located at Glaslough in Co. Monaghan, Ireland. It consists of two sedimentation ponds and a sequence of five shallow vegetated wetland cells. The ICW cells were lined with 500-mm thick local subsoil material, which comprised a mixture of alluvium, organic soils, tills, and gravel. Groundwater samples and head data were collected from eight piezometers, which were installed around the ICW cells. The groundwater and wetland water samples were analysed for water quality parameters such as bulk organic matter, nutrients, and pathogens. Overall, the quality of groundwater underlying the ICW system recorded some contamination with bulk organic matter and some inorganic nutrients. Significantly higher contaminant concentrations were recorded in monitoring wells upgradient and near to the distal wetland cells than downgradient ones, which were near to the proximal cells. For the downgradient piezometers, concentrations seldomly exceeded the natural background levels. Detailed analyses through the application of chemometrics models indicated that the source of contamination was largely of geogenic origin. Findings suggest that ICW systems pose a minimal risk to the groundwater quality; the greatest risk was associated with the distal wetland cells

    Dynamic membrane bioreactor performance enhancement by powdered activated carbon addition: Evaluation of sludge morphological, aggregative and microbial properties

    Full text link
    © 2018 The effects of powdered activated carbon (PAC) addition on sludge morphological, aggregative and microbial properties in a dynamic membrane bioreactor (DMBR) were investigated to explore the enhancement mechanism of pollutants removal and filtration performance. Sludge properties were analyzed through various analytical measurements. The results showed that the improved sludge aggregation ability and the evolution of microbial communities affected sludge morphology in PAC-DMBR, as evidenced by the formation of large, regularly shaped and strengthened sludge flocs. The modifications of sludge characteristics promoted the formation process and filtration flux of the dynamic membrane (DM) layer. Additionally, PAC addition did not exert very significant influence on the propagation of eukaryotes (protists and metazoans) and microbial metabolic activity. High-throughput pyrosequencing results indicated that adding PAC improved the bacterial diversity in activated sludge, as PAC addition brought about additional microenvironment in the form of biological PAC (BPAC), which promoted the enrichment of Acinetobacter (13.9%), Comamonas (2.9%), Flavobacterium (0.31%) and Pseudomonas (0.62%), all contributing to sludge flocs formation and several (such as Acinetobacter) capable of biodegrading relatively complex organics. Therefore, PAC addition could favorably modify sludge properties from various aspects and thus enhance the DMBR performance

    Observed network dynamics from altering the balance between excitatory and inhibitory neurons in cultured networks

    Full text link
    Complexity in the temporal organization of neural systems may be a reflection of the diversity of its neural constituents. These constituents, excitatory and inhibitory neurons, comprise an invariant ratio in vivo and form the substrate for rhythmic oscillatory activity. To begin to elucidate the dynamical mechanisms that underlie this balance, we construct novel neural circuits not ordinarily found in nature. We culture several networks of neurons composed of excitatory and inhibitory cells and use a multi-electrode array to study their temporal dynamics as the balance is modulated. We use the electrode burst as the temporal imprimatur to signify the presence of network activity. Burst durations, inter-burst intervals, and the number of spikes participating within a burst are used to illustrate the vivid dynamical differences between the various cultured networks. When the network consists largely of excitatory neurons, no network temporal structure is apparent. However, the addition of inhibitory neurons evokes a temporal order. Calculation of the temporal autocorrelation shows that when the number of inhibitory neurons is a major fraction of the network, a striking network pattern materializes when none was previously present

    Effects of interspecific competition on the growth of macrophytes and nutrient removal in constructed wetlands: A comparative assessment of free water surface and horizontal subsurface flow systems

    Full text link
    © 2016 Elsevier Ltd. The outcome of competition between adjoining interspecific colonies of Phragmites and Typha in two large field pilot-scale free water surface (FWS) and subsurface flow (SSF) CWs is evaluated. According to findings, the effect of interspecific competition was notable for Phragmites australis, whereby it showed the highest growth performance in both FWS and SSF wetland. In a mixed-culture, P. australis demonstrates superiority in terms of competitive interactions for space between plants. Furthermore, the interspecific competition among planted species seemed to cause different ecological responses of plant species in the two CWs. For example, while relatively high density and shoot height determined the high aboveground dry weight of P. australis in the FWS wetland, this association was not evident in the SSF. Additionally, while plants nutrients uptake accounts for a higher proportion of the nitrogen removal in FWS, that in the SSF accounts for a higher proportion of the phosphorous removal

    A Survey of the Benthic Macrofauna and Fish Species Assemblages in a Mangrove Habitat in Ghana

    Get PDF
    In order to enhance ecological knowledge for coastal and mangrove  ecosystem conservation in Ghana, the study documents the taxonomic groups of benthic macrofauna and fish assemblages in an urban mangrove swamp as its fundamental objective with emphasis on their composition, richness and diversity. This is because benthic and fish fauna of mangrove habitats are amongst the least studied biota in Ghana. Fish and benthos sampling was undertaken from five randomly selected pools within a mangrove stand during the wet and dry seasons using pole-seine net (7 m long and 1.5 m depth, with stretched mesh size of 5 mm) and an Ekman grab (15 cm × 15 cm dimensions), respectively. All samples were  preserved in 10% formalin for laboratory analysis. The results indicated a more diverse macrozoobenthic community in the wet (H¹ = 1.8) than dry season (H¹ = 1.5) . Overall, five out of a total of 13 genera found are intolerant to pollution and four moderately tolerant, while four comprising polychaetes and the midge Chironomus, are pollution tolerant. This suggests that the mangrove habitat is less polluted. A grand total of 917 fish specimens, belonging to 15 species and nine families, were encountered for both seasons (371 and 546 specimens for wet and dry seasons, respectively). The black-chinned tilapia, Sarotherodon  melanotheron, was the dominant fish species in the wet season, accounting for 54.2% of the total fish caught, whilst the grey mullets, Mugil babanensis and Mugil curema, were the dominant species in the dry season, with a combined total of 51.4% of the fish population. However, over 70% of these dominant fish species from both seasons were juveniles providing a strong justification for the observation that the mangrove habitats are nursery grounds for fish inhabiting adjacent riverine, estuarine and inshore marine habitats. Considering this relevance of mangroves and the ongoing conversion attempts of mangrove habitats to other land uses, a concerted mangroves conservation effort is strongly advocated

    Current status of urban wastewater treatment plants in China

    Full text link
    © 2016 Elsevier Ltd. The study reported and analyzed the current state of wastewater treatment plants (WWTPs) in urban China from the perspective of treatment technologies, pollutant removals, operating load and effluent discharge standards. By the end of 2013, 3508 WWTPs have been built in 31 provinces and cities in China with a total treatment capacity of 1.48 × 108 m3/d. The uneven population distribution between China's east and west regions has resulted in notably different economic development outcomes. The technologies mostly used in WWTPs are AAO and oxidation ditch, which account for over 50% of the existing WWTPs. According to statistics, the efficiencies of COD and NH3-N removal are good in 656 WWTPs in 70 cities. The overall average COD removal is over 88% with few regional differences. The average removal efficiency of NH3-N is up to 80%. Large differences exist between the operating loads applied in different WWTPs. The average operating loading rate is approximately 83%, and 52% of WWTPs operate at loadings of <80%, treating up to 40% of the wastewater generated. The implementation of discharge standards has been low. Approximately 28% of WWTPs that achieved the Grade I-A Discharge Standard of Pollutants for Municipal Wastewater Treatment Plant (GB 18918-2002) were constructed after 2010. The sludge treatment and recycling rates are only 25%, and approximately 15% of wastewater is inefficiently treated. Approximately 60% of WWTPs have capacities of 1 × 104 m3/d-5 × 104 m3/d. Relatively high energy consumption is required for small-scale processing, and the utilization rate of recycled wastewater is low. The challenges of WWTPs are discussed with the aim of developing rational criteria and appropriate technologies for water recycling. Suggestions regarding potential technical and administrative measures are provided

    Television-viewing time and bodily pain in Australian adults with and without type 2 diabetes : 12-year prospective relationships

    Get PDF
    Background Bodily pain is a common presentation in several chronic diseases, yet the influence of sedentary behaviour, common in ageing adults, is unclear. Television-viewing (TV) time is a ubiquitous leisure-time sedentary behaviour, with a potential contribution to the development of bodily pain. We examined bodily pain trajectories and the longitudinal relationships of TV time with the bodily pain severity; and further, the potential moderation of the relationships by type 2 diabetes (T2D) status. Method Data were from 4099 participants (aged 35 to 65 years at baseline) in the Australian Diabetes, Obesity and Lifestyle Study (AusDiab), who took part in the follow-ups at 5 years, 12 years, or both. Bodily pain (from SF36 questionnaire: a 0 to 100 scale, where lower scores indicate more-severe pain), TV time, and T2D status [normal glucose metabolism (NGM), prediabetes, and T2D] were assessed at all three time points. Multilevel growth curve modelling used age (centred at 50 years) as the time metric, adjusting for potential confounders, including physical activity and waist circumference. Results Mean TV time increased, and bodily pain worsened (i.e., mean bodily pain score decreased) across the three time points. Those with T2D had higher TV time and more-severe bodily pain than those without T2D at all time points. In a fully adjusted model, the mean bodily pain score for those aged 50 years at baseline was 76.9(SE: 2.2) and worsened (i.e., bodily pain score decreased) significantly by 0.3(SE: 0.03) units every additional year (p <0.001). Those with initially more-severe pain had a higher rate of increase in pain severity. At any given time point, a one-hour increase in daily TV time was significantly associated with an increase in pain severity [bodily pain score decreased by 0.69 (SE: 0.17) units each additional hour; p <0.001], accounting for the growth factor (age) and confounders’ effects. The association was more-pronounced in those with T2D than in those without (prediabetes or NGM), with the effect of T2D on bodily pain severity becoming more apparent as TV time increases, significantly so when TV time increased above 2.5 hours per day. Conclusion Bodily pain severity increased with age in middle-aged and older Australian adults over a 12-year period, and increments in TV time predicted increased bodily pain severity at any given period, which was more pronounced in those with T2D. While increasing physical activity is a mainstay of the prevention and management of chronic health problems, these new findings highlight the potential of reducing sedentary behaviours in this context

    Transformation and utilization of slowly biodegradable organic matters in biological sewage treatment of anaerobic anoxic oxic systems

    Full text link
    © 2016 Elsevier Ltd. This study examined the distribution of carbon sources in two anaerobic anoxic oxic (AAO) sewage treatment plants in Xi'an and investigated the transformation characteristics and utilization potential of slowly biodegradable organic matters (SBOM). Results indicated under anaerobic and aerobic conditions, SBOM could be transformed at a rate of 65% in 8 h into more readily biologically utilizable substrates such as volatile fatty acids (VFAs), polysaccharides and proteins. Additionally, non-biodegradable humus-type substances which are difficult to biodegrade and readily accumulate, were also generated. These products could be further hydrolyzed to aldehyde and ketone compounds and then transformed into substances with significant oxygen-containing functional groups and utilized subsequently. The molecular weights of proteinoid substances had a wide distribution and tended to decrease over time. Long hours of microbial reaction increased the proportion of micromolecular substances. This particular increase generated significant bioavailability, which can greatly improve the efficiency of nitrogen removal
    • …
    corecore