12 research outputs found

    Parameterized Indexed Value Function for Efficient Exploration in Reinforcement Learning

    Full text link
    It is well known that quantifying uncertainty in the action-value estimates is crucial for efficient exploration in reinforcement learning. Ensemble sampling offers a relatively computationally tractable way of doing this using randomized value functions. However, it still requires a huge amount of computational resources for complex problems. In this paper, we present an alternative, computationally efficient way to induce exploration using index sampling. We use an indexed value function to represent uncertainty in our action-value estimates. We first present an algorithm to learn parameterized indexed value function through a distributional version of temporal difference in a tabular setting and prove its regret bound. Then, in a computational point of view, we propose a dual-network architecture, Parameterized Indexed Networks (PINs), comprising one mean network and one uncertainty network to learn the indexed value function. Finally, we show the efficacy of PINs through computational experiments.Comment: 17 pages, 4 figures, Proceedings of the 34th AAAI Conference on Artificial Intelligenc

    Reinforcement Learning, Bit by Bit

    Full text link
    Reinforcement learning agents have demonstrated remarkable achievements in simulated environments. Data efficiency poses an impediment to carrying this success over to real environments. The design of data-efficient agents calls for a deeper understanding of information acquisition and representation. We develop concepts and establish a regret bound that together offer principled guidance. The bound sheds light on questions of what information to seek, how to seek that information, and it what information to retain. To illustrate concepts, we design simple agents that build on them and present computational results that demonstrate improvements in data efficiency

    Epistemic Neural Networks

    Full text link
    Intelligence relies on an agent's knowledge of what it does not know. This capability can be assessed based on the quality of joint predictions of labels across multiple inputs. Conventional neural networks lack this capability and, since most research has focused on marginal predictions, this shortcoming has been largely overlooked. We introduce the epistemic neural network (ENN) as an interface for models that represent uncertainty as required to generate useful joint predictions. While prior approaches to uncertainty modeling such as Bayesian neural networks can be expressed as ENNs, this new interface facilitates comparison of joint predictions and the design of novel architectures and algorithms. In particular, we introduce the epinet: an architecture that can supplement any conventional neural network, including large pretrained models, and can be trained with modest incremental computation to estimate uncertainty. With an epinet, conventional neural networks outperform very large ensembles, consisting of hundreds or more particles, with orders of magnitude less computation. We demonstrate this efficacy across synthetic data, ImageNet, and some reinforcement learning tasks. As part of this effort we open-source experiment code

    The Neural Testbed: Evaluating Joint Predictions

    Full text link
    Predictive distributions quantify uncertainties ignored by point estimates. This paper introduces The Neural Testbed: an open-source benchmark for controlled and principled evaluation of agents that generate such predictions. Crucially, the testbed assesses agents not only on the quality of their marginal predictions per input, but also on their joint predictions across many inputs. We evaluate a range of agents using a simple neural network data generating process. Our results indicate that some popular Bayesian deep learning agents do not fare well with joint predictions, even when they can produce accurate marginal predictions. We also show that the quality of joint predictions drives performance in downstream decision tasks. We find these results are robust across choice a wide range of generative models, and highlight the practical importance of joint predictions to the community

    Parameterized Indexed Value Function for Efficient Exploration in Reinforcement Learning

    No full text
    It is well known that quantifying uncertainty in the action-value estimates is crucial for efficient exploration in reinforcement learning. Ensemble sampling offers a relatively computationally tractable way of doing this using randomized value functions. However, it still requires a huge amount of computational resources for complex problems. In this paper, we present an alternative, computationally efficient way to induce exploration using index sampling. We use an indexed value function to represent uncertainty in our action-value estimates. We first present an algorithm to learn parameterized indexed value function through a distributional version of temporal difference in a tabular setting and prove its regret bound. Then, in a computational point of view, we propose a dual-network architecture, Parameterized Indexed Networks (PINs), comprising one mean network and one uncertainty network to learn the indexed value function. Finally, we show the efficacy of PINs through computational experiments
    corecore