5,753 research outputs found

    Targeted searches for gravitational waves from radio pulsars

    Get PDF
    An overview of the searches for gravitational waves from radio pulsars with LIGO and GEO is given. We give a brief description of the algorithm used in these targeted searches and provide end-to-end validation of the technique through hardware injections. We report on some aspects of the recent S3/S4 LIGO and GEO search for signals from several pulsars. The gaussianity of narrow frequency bands of S3/S4 LIGO data, where pulsar signals are expected, is assessed with Kolmogorov-Smirnov tests. Preliminary results from the S3 run with a network of four detectors are given for pulsar J1939+2134

    Effect of Radiative Levitation on Calculations of Accretion Rates in White Dwarfs

    Full text link
    Elements heavier than hydrogen or helium that are present in the atmospheres of white dwarfs with effective temperatures lower than 25,000 K, are believed to be the result of accretion. By measuring the abundances of these elements and by assuming a steady-state accretion, we can derive the composition of the accreted matter and infer its source. The presence of radiative levitation, however, may affect the determination of the accretion rate. We present time-dependent diffusion calculations that take into account radiative levitation and accretion. The calculations are performed on C, N, O, Ne, Na, Mg, Al, Si, S, Ar, and Ca in hydrogen-rich white dwarf models with effective temperatures lower than 25,000 K and a gravity of log g = 8.0. We show that in the presence of accretion, the abundance of an element supported by the radiative levitation is given by the equilibrium between the radiative and gravitational accelerations, unless the abundance predicted by the steady-state accretion is much greater than the abundance supported by the radiative acceleration.Comment: 6 pages, to be published in the proceedings of the 17th European White Dwarf Workshop that was held in Tubingen, Germany, on August 16-20, 201

    Bayesian estimation of pulsar parameters from gravitational wave data

    Get PDF
    We present a method of searching for, and parameterizing, signals from known radio pulsars in data from interferometric gravitational wave detectors. This method has been applied to data from the LIGO and GEO 600 detectors to set upper limits on the gravitational wave emission from several radio pulsars. Here we discuss the nature of the signal and the performance of the technique on simulated data. We show how to perform a coherent multiple detector analysis and give some insight in the covariance between the signal parameters.Comment: 9 pages, 6 figures. Accepted to Phys. Rev. D. A few small changes from previous versio

    Mott insulator to superfluid transition in the Bose-Hubbard model: a strong-coupling approach

    Get PDF
    We present a strong-coupling expansion of the Bose-Hubbard model which describes both the superfluid and the Mott phases of ultracold bosonic atoms in an optical lattice. By performing two successive Hubbard-Stratonovich transformations of the intersite hopping term, we derive an effective action which provides a suitable starting point to study the strong-coupling limit of the Bose-Hubbard model. This action can be analyzed by taking into account Gaussian fluctuations about the mean-field approximation as in the Bogoliubov theory of the weakly interacting Bose gas. In the Mott phase, we reproduce results of previous mean-field theories and also calculate the momentum distribution function. In the superfluid phase, we find a gapless spectrum and compare our results with the Bogoliubov theory.Comment: 8 pages, 6 figures; (v2) Two references adde

    Dynamics of sliding drops on superhydrophobic surfaces

    Full text link
    We use a free energy lattice Boltzmann approach to investigate numerically the dynamics of drops moving across superhydrophobic surfaces. The surfaces comprise a regular array of posts small compared to the drop size. For drops suspended on the posts the velocity increases as the number of posts decreases. We show that this is because the velocity is primarily determined by the contact angle which, in turn, depends on the area covered by posts. Collapsed drops, which fill the interstices between the posts, behave in a very different way. The posts now impede the drop behaviour and the velocity falls as their density increases.Comment: 7 pages, 4 figures, accepted for publication in Europhys. Let

    Aging, rejuvenation and memory effects in re-entrant ferromagnets

    Full text link
    We have studied the slow dynamics of the ferromagnetic phases of the re-entrant CdCr_{2x}In_{2-2x}S_4 system for 0.85<x<=1 by means of low frequency ac susceptibility and magnetization measurements. Experimental procedures widely used in the investigation of the out-of-equilibrium dynamics of spin glasses (such as the x=0.85 compound) have been applied to search for aging, rejuvenation and memory effects, and to test their dependence on the disorder introduced by dilution of the magnetic ions. Whereas the rejuvenation effect is found in all studied samples, the memory effect is clearly enhanced for increasing dilutions. The results support a description of aging in both ferromagnetic and re-entrant spin-glass phases in terms of hierarchical reconformations of domain walls pinned by the disorder.Comment: Service de Physique de l'Etat Condense, DRECAM, DSM, CEA Saclay,91191 Gif sur Yvette Cedex, France, 9 pages, including 7 figures, To appear in Eur. Phys. J. B (2002

    EUNIS E-Learning Snapshots 2008

    Get PDF
    The paper presents an analysis of the information obtained through the third EUNIS E-Learning Snapshots scheme. Around 50 member universities of EUNIS have contributed information on the way e-learning is organised and deployed at their universities along with their views on e-learning. The results of this survey present a picture of the deployment of e-learning in the universities represented in our sample. The Snapshots scheme is one of the activities of the EUNIS E-Learning Task Force, which met in Malta in February 2008

    Jetting Micron-Scale Droplets onto Chemically Heterogeneous Surfaces

    Full text link
    We report experiments investigating the behaviour of micron-scale fluid droplets jetted onto surfaces patterned with lyophobic and lyophilic stripes. The final droplet shape depends on the droplet size relative to that of the stripes. In particular when the droplet radius is of the same order as the stripe width, the final shape is determined by the dynamic evolution of the drop and shows a sensitive dependence on the initial droplet position and velocity. Numerical solutions of the dynamical equations of motion of the drop provide a close quantitative match to the experimental results. This proves helpful in interpreting the data and allows for accurate prediction of fluid droplet behaviour for a wide range of surfaces.Comment: 14 pages, accepted for publication in Langmui

    A Metropolis-Hastings algorithm for extracting periodic gravitational wave signals from laser interferometric detector data

    Full text link
    The Markov chain Monte Carlo methods offer practical procedures for detecting signals characterized by a large number of parameters and under conditions of low signal-to-noise ratio. We present a Metropolis-Hastings algorithm capable of inferring the spin and orientation parameters of a neutron star from its periodic gravitational wave signature seen by laser interferometric detector
    corecore