665 research outputs found

    Recognizing pedogenic features in Paleogene sandstones and silcretes in Belgium: a key-feature for paleoenvironmental and sourcing material studies

    Get PDF
    International audienceA few sandstones occurring in Belgium, especially those from Paleogene strata, share many common features with pedogenic and groundwater silcretes documented in the Paris Basin in France, in South Africa and in Australia (e.g. Thiry, 1999; Summerfield, 1983; Webb & Golding, 1998,). Here we present a review of the criteria that may be used to assess the pedogenic (or "groundwater") origin for sandstones and silcretes. At field scale, pedogenic features in silcrete often consist in the development of vertical (columnar) or nodular structures and/or layers (horizons) due to vetical percolation (illuviation) and transformation of materials in the profile porosity and cracks. Groundwater silcrete often exhibit a typical mammilated surface (e.g. Nash & Ullyot, 2007). Root and rootlet casts, sometimes with silicified root or wood material, also indicate that the rock evolved at the surface or near-surface. At microscopic scale, illuviation of silt and clays in the vadose or water-table environment results in the formation of a series of finely-laminated coatings and infillings. These pedofeatures consist in "typic", "crescent", "capping", "pendent", "micropan" and "crust" coatings (Bullock et al., 1985). Irregular rounded structures or "glaebules" also develop as well as micro-columnar or prismatic textures. Many of them have been observed in pedogenic silcretes around the world (e.g. Thiry, 1999) but also in Paleogene silcrete in Belgium (e.g. Veldman et al., in review). Of particular importance is the concentration of fine-grained titanium-oxides in pedogenic silcrete. These Ti-oxides most probably originated from the weathering of clay material and were concentrated via the same pedogenic processes which concentrated silica in the silcrete profile (Thiry, 1997). In sandstones with a pure sand matrix, where no or few fine-grained material is available for illuviation, assessing the pedogenic origin for the silicification is much more difficult based solely on microtextural observations. New perspectives may arise from trace-element analysis in the quartz cement overgrowing the grains. For example, combining cathodoluminescence imaging (CL) and electron microprobe analysis (EPMA) allowed the detec on of abnormally-high concentration of Al and K in the quartz cement relative to the quartz grains in the Grandglise Thanetian sandstone in the Mons Basin (figure). This suggests that first the weathering of glauconite, which is actually observed here, is the likely source for silica and secondly, the evidence for aluminum migration would indicate strongly acidic conditions in the pore fluids

    Percutaneous balloon angioplasty in an infant with obstructed total anomalous pulmonary vein return

    Get PDF
    This is a report of successful dilation of stenosis of the common trunk in a case of total anomalous pulmonary vein return into the left superior vena cava in a 3 month old infant. Percutaneous angioplasty was performed with a 6 mm diameter balloon catheter. Right ventricular systolic pressure decreased from 96 to 60 mm Hg, mean pulmonary vein pressure decreased from 26 to 14 mm Hg and left ventricular systolic pressure increased from 70 to 90 mm Hg

    Hydrophone VSP surveys in hard rock

    Get PDF
    Seismic imaging in hard rock environments is gaining wider acceptance as an exploration technique and as a mine-planning tool. To date, 13 successful case studies have been acquired in Australia. The images generated from hard rock targets exhibit large levels of complexity and their interpretations remain an active area of study. To assist the imaging and better understand the source of the reflections observed, vertical seismic profiling (VSP) can be employed. This technique is not readily applied to hard rock environments because cost and operational issues often prove prohibitive. We propose the use of hydrophone arrays as a cost effective solution to VSP acquisition. We highlight the key challenges in using these receivers and propose solutions to overcome them. By careful acquisition methodologies and refined signal processing techniques, the tube waves that have up to now compromised the use of hydrophones for VSP acquisition can be effectively mitigated. We show that the data acquired with hydrophones compare favorably to that acquired with conventional 3C geophones. The data acquired with hydrophones come at a fraction of the cost and deployment time required for conventional acquisition procedures. Our results show that hydrophone vertical seismic acquisition is a viable, cost effective, and efficient solution that should be employed more routinely in hard rock environments to enhance the value of the surface data sets being acquired

    GPR for large-scale estimation of groundwater recharge distribution

    Get PDF
    The Gnangara Mound, north of Perth, Western Australia, has been investigated using Ground-Penetrating Radar (GPR). Several hundred line-kilometers of GPR of common offset data have been acquired over an area of approximately 800 km2. The acquisition of these datatasets was performed at two different center frequencies (50 and 250 MHz)in order to better resolve the complexity of the hydrogeological targets of interest which are water retentive layers found above the water table. These layers impede the recharge of the surficial aquifer and may have important impact on local ecosystems but also on the management of the ground water resource. The data presented here-in demonstrate the successful imaging of the regional water table and of these water retentive layers. For thefirst time, these data provide insight into the spatial distribution and the continuity of these water retentive layers and provide important information to be included in the flow modeling of the ground water in this region of the world

    Waveguide properties recovered from shallow diffractions in common offset GPR

    Get PDF
    Near-surface heterogeneities produce diffractions in common offset ground-penetrating radar (GPR) data from the Gnangara Groundwater Mound, north of Perth, Western Australia. These diffracted wavefields can be enhanced and show a dispersion pattern if they propagate along a waveguide caused by a low velocity surface layer, such as moist sand on top of dry sand. Until now, GPR waveguide dispersion has been analyzed and inverted using common midpoint data. Using numerical modeling, we demonstrate that the same dispersion information can also be recovered from a diffracted electromagnetic wavefield recorded with common offset geometry. Frequency-slowness analysis of shallow diffractions in common offset GPR field data reveals high resolution dispersion curves. Inverting picked dispersion maxima to modeled curves (i.e., modal wave propagation in waveguide layer) allows estimation of waveguide height and velocities of waveguide and the underlying material. Data analysis in the frequency-wavenumber domain provides an alternative technique for extracting dispersion curves. Preliminary results validate this approach, which could be favorable in large-scale applications due to minimal processing requirement and inherent yet adjustable spatial averaging. The differences between waveguide parameters recovered from two surveys appear to be consistent with seasonal changes in moisture content and lateral changes due to variations in depositional environment.Our approach presents a new method to quantify the shallow dielectric permittivity structure of the subsurface from common offset gathers—the most commonly acquired type of GPR data. Potential applications of this method include estimation of shallow moisture distribution, early target identification for unexploded ordnance (UXO) detection, concrete slab characterization, pedological investigations, or planetary exploration
    • …
    corecore