472 research outputs found

    Optimal Beamforming for Physical Layer Security in MISO Wireless Networks

    Get PDF
    A wireless network of multiple transmitter-user pairs overheard by an eavesdropper, where the transmitters are equipped with multiple antennas while the users and eavesdropper are equipped with a single antenna, is considered. At different levels of wireless channel knowledge, the problem of interest is beamforming to optimize the users' quality-of-service (QoS) in terms of their secrecy throughputs or maximize the network's energy efficiency under users' QoS. All these problems are seen as very difficult optimization problems with many nonconvex constraints and nonlinear equality constraints in beamforming vectors. The paper develops path-following computational procedures of low-complexity and rapid convergence for the optimal beamforming solution. Their practicability is demonstrated through numerical examples

    Real-time Optimal Resource Allocation for Embedded UAV Communication Systems

    Get PDF
    We consider device-to-device (D2D) wireless information and power transfer systems using an unmanned aerial vehicle (UAV) as a relay-assisted node. As the energy capacity and flight time of UAVs is limited, a significant issue in deploying UAV is to manage energy consumption in real-time application, which is proportional to the UAV transmit power. To tackle this important issue, we develop a real-time resource allocation algorithm for maximizing the energy efficiency by jointly optimizing the energy-harvesting time and power control for the considered (D2D) communication embedded with UAV. We demonstrate the effectiveness of the proposed algorithms as running time for solving them can be conducted in milliseconds.Comment: 11 pages, 5 figures, 1 table. This paper is accepted for publication on IEEE Wireless Communications Letter

    Rate Maximization of Decode-and-Forward Relaying Systems with RF Energy Harvesting

    Full text link
    We consider a three-node decode-and-forward (DF) half-duplex relaying system, where the source first harvests RF energy from the relay, and then uses this energy to transmit information to the destination via the relay. We assume that the information transfer and wireless power transfer phases alternate over time in the same frequency band, and their {\it time fraction} (TF) may change or be fixed from one transmission epoch (fading state) to the next. For this system, we maximize the achievable average data rate. Thereby, we propose two schemes: (1) jointly optimal power and TF allocation, and (2) optimal power allocation with fixed TF. Due to the small amounts of harvested power at the source, the two schemes achieve similar information rates, but yield significant performance gains compared to a benchmark system with fixed power and fixed TF allocation.Comment: 4 pages, 1 figur

    Joint Fractional Time Allocation and Beamforming for Downlink Multiuser MISO Systems

    Full text link
    It is well-known that the traditional transmit beamforming at a base station (BS) to manage interference in serving multiple users is effective only when the number of users is less than the number of transmit antennas at the BS. Non-orthogonal multiple access (NOMA) can improve the throughput of users with poorer channel conditions by compromising their own privacy because other users with better channel conditions can decode the information of users in poorer channel state. NOMA still prefers that the number of users is less than the number of antennas at the BS transmitter. This paper resolves such issues by allocating separate fractional time slots for serving the users with similar channel conditions. This enables the BS to serve more users within the time unit while the privacy of each user is preserved. The fractional times and beamforming vectors are jointly optimized to maximize the system's throughput. An efficient path-following algorithm, which invokes a simple convex quadratic program at each iteration, is proposed for the solution of this challenging optimization problem. Numerical results confirm its versatility.Comment: IEEE Communications Letters (To Appear

    Beamforming in Two-Way Fixed Gain Amplify-and-Forward Relay Systems with CCI

    Full text link
    We analyze the outage performance of a two-way fixed gain amplify-and-forward (AF) relay system with beamforming, arbitrary antenna correlation, and co-channel interference (CCI). Assuming CCI at the relay, we derive the exact individual user outage probability in closed-form. Additionally, while neglecting CCI, we also investigate the system outage probability of the considered network, which is declared if any of the two users is in transmission outage. Our results indicate that in this system, the position of the relay plays an important role in determining the user as well as the system outage probability via such parameters as signal-to-noise imbalance, antenna configuration, spatial correlation, and CCI power. To render further insights into the effect of antenna correlation and CCI on the diversity and array gains, an asymptotic expression which tightly converges to exact results is also derived.Comment: Accepted for presentation on IEEE International Conference on Communications (ICC 2012), Ottawa, Canada, June 201

    Wireless Networks with Energy Harvesting and Power Transfer: Joint Power and Time Allocation

    Full text link
    In this paper, we consider wireless powered communication networks which could operate perpetually, as the base station (BS) broadcasts energy to the multiple energy harvesting (EH) information transmitters. These employ "harvest then transmit" mechanism, as they spend all of their energy harvested during the previous BS energy broadcast to transmit the information towards the BS. Assuming time division multiple access (TDMA), we propose a novel transmission scheme for jointly optimal allocation of the BS broadcasting power and time sharing among the wireless nodes, which maximizes the overall network throughput, under the constraint of average transmit power and maximum transmit power at the BS. The proposed scheme significantly outperforms "state of the art" schemes that employ only the optimal time allocation. If a single EH transmitter is considered, we generalize the optimal solutions for the case of fixed circuit power consumption, which refers to a much more practical scenario.Comment: 5 pages, 2 figures in IEEE Signal Processing Letters, vol. 23, no. 1, January 201
    • …
    corecore