134 research outputs found
Temporal stability and change in the social call repertoire of migrating humpback whales
Quantifying the stability of a species vocal repertoire is fundamental for further investigations into repertoire function and geographic variation. Changes to the repertoire of sounds used in the song displays of male humpback whales have been well studied. In contrast, little is known about the stability of this species' non-song vocal calls. The stability of the social call repertoire of east Australian humpback whales was investigated from 1997, 2003-2004, and 2008. Out of 46 qualitatively defined call types, 19 were classified as "song-unit calls" that tended to change with the song, and 15 were "inconsistent" and only found in one or two years. Twelve call types were "stable" and present in all years and were commonly produced (64.2% of calls). Stable calls tended to vary in some of the measured call parameters but there was no clear trend between years. This result could indicate that minor changes to calls are not permanent, but reflect individual differences in call production or the graded nature of calls within different social environments. This research has clearly identified stable calls in the call repertoire of humpback whales and while their function is not well understood, their stability suggests an important role in social interactions
Maternal Vitamin D, Folate, and Polyunsaturated Fatty Acid Status and Bacterial Vaginosis during Pregnancy
Objective. To investigate associations among serum 25-hydroxy-vitamin D (25-OH-D), folate, omega-6/omega-3 fatty acid ratio and bacterial vaginosis (BV) during pregnancy. Methods. Biospecimens and data were derived from a random sample (N = 160) of women from the Nashville Birth Cohort. We compared mean plasma nutrient concentrations for women with and without BV during pregnancy (based on Nugent score ≥7) and assessed the odds of BV for those with 25-OH-D <12 ng/mL, folate <5 ug/L, and omega-6/omega-3 ratio >15. Results. The mean plasma 25-OH-D was significantly lower among women with BV during pregnancy (18.00±8.14 ng/mL versus 24.34±11.97 ng/mL, P = 0.044). The adjusted odds of BV were significantly increased among pregnant women with 25-OH-D <12 ng/mL (aOR 5.11, 95% CI: 1.19–21.97) and folate <5 ug/L (aOR 7.06, 95% CI: 1.07–54.05). Conclusion. Vitamin D and folate deficiencies were strongly associated with BV (Nugent score ≥7) during pregnancy
Recommended from our members
Racial and Geographic Variation in Effects of Maternal Education and Neighborhood-Level Measures of Socioeconomic Status on Gestational Age at Birth: Findings From the ECHO Cohorts
Preterm birth occurs at excessively high and disparate rates in the United States. In 2016, the National Institutes of Health (NIH) launched the Environmental influences on Child Health Outcomes (ECHO) program to investigate the influence of early life exposures on child health. Extant data from the ECHO cohorts provides the opportunity to examine racial and geographic variation in effects of individual- and neighborhood-level markers of socioeconomic status (SES) on gestational age at birth. The objective of this study was to examine the association between individual-level (maternal education) and neighborhood-level markers of SES and gestational age at birth, stratifying by maternal race/ethnicity, and whether any such associations are modified by US geographic region. Twenty-six ECHO cohorts representing 25,526 mother-infant pairs contributed to this disseminated meta-analysis that investigated the effect of maternal prenatal level of education (high school diploma, GED, or less; some college, associate\u27s degree, vocational or technical training [reference category]; bachelor\u27s degree, graduate school, or professional degree) and neighborhood-level markers of SES (census tract [CT] urbanicity, percentage of black population in CT, percentage of population below the federal poverty level in CT) on gestational age at birth (categorized as preterm, early term, full term [the reference category], late, and post term) according to maternal race/ethnicity and US region. Multinomial logistic regression was used to estimate odds ratios (OR) and 95% confidence intervals (CIs). Cohort-specific results were meta-analyzed using a random effects model. For women overall, a bachelor\u27s degree or above, compared with some college, was associated with a significantly decreased odds of preterm birth (aOR 0.72; 95% CI: 0.61-0.86), whereas a high school education or less was associated with an increased odds of early term birth (aOR 1.10, 95% CI: 1.00-1.21). When stratifying by maternal race/ethnicity, there were no significant associations between maternal education and gestational age at birth among women of racial/ethnic groups other than non-Hispanic white. Among non-Hispanic white women, a bachelor\u27s degree or above was likewise associated with a significantly decreased odds of preterm birth (aOR 0.74 (95% CI: 0.58, 0.94) as well as a decreased odds of early term birth (aOR 0.84 (95% CI: 0.74, 0.95). The association between maternal education and gestational age at birth varied according to US region, with higher levels of maternal education associated with a significantly decreased odds of preterm birth in the Midwest and South but not in the Northeast and West. Non-Hispanic white women residing in rural compared to urban CTs had an increased odds of preterm birth; the ability to detect associations between neighborhood-level measures of SES and gestational age for other race/ethnic groups was limited due to small sample sizes within select strata. Interventions that promote higher educational attainment among women of reproductive age could contribute to a reduction in preterm birth, particularly in the US South and Midwest. Further individual-level analyses engaging a diverse set of cohorts are needed to disentangle the complex interrelationships among maternal education, neighborhood-level factors, exposures across the life course, and gestational age at birth outcomes by maternal race/ethnicity and US geography
Associations of Neighborhood Opportunity and Social Vulnerability With Trajectories of Childhood Body Mass Index and Obesity Among US Children
IMPORTANCE: Physical and social neighborhood attributes may have implications for children\u27s growth and development patterns. The extent to which these attributes are associated with body mass index (BMI) trajectories and obesity risk from childhood to adolescence remains understudied.
OBJECTIVE: To examine associations of neighborhood-level measures of opportunity and social vulnerability with trajectories of BMI and obesity risk from birth to adolescence.
DESIGN, SETTING, AND PARTICIPANTS: This cohort study used data from 54 cohorts (20 677 children) participating in the Environmental Influences on Child Health Outcomes (ECHO) program from January 1, 1995, to January 1, 2022. Participant inclusion required at least 1 geocoded residential address and anthropometric measure (taken at the same time or after the address date) from birth through adolescence. Data were analyzed from February 1 to June 30, 2022.
EXPOSURES: Census tract-level Child Opportunity Index (COI) and Social Vulnerability Index (SVI) linked to geocoded residential addresses at birth and in infancy (age range, 0.5-1.5 years), early childhood (age range, 2.0-4.8 years), and mid-childhood (age range, 5.0-9.8 years).
MAIN OUTCOMES AND MEASURES: BMI (calculated as weight in kilograms divided by length [if aged \u3c2 \u3eyears] or height in meters squared) and obesity (age- and sex-specific BMI ≥95th percentile). Based on nationwide distributions of the COI and SVI, Census tract rankings were grouped into 5 categories: very low (\u3c20th \u3epercentile), low (20th percentile to \u3c40th \u3epercentile), moderate (40th percentile to \u3c60th \u3epercentile), high (60th percentile to \u3c80th \u3epercentile), or very high (≥80th percentile) opportunity (COI) or vulnerability (SVI).
RESULTS: Among 20 677 children, 10 747 (52.0%) were male; 12 463 of 20 105 (62.0%) were White, and 16 036 of 20 333 (78.9%) were non-Hispanic. (Some data for race and ethnicity were missing.) Overall, 29.9% of children in the ECHO program resided in areas with the most advantageous characteristics. For example, at birth, 26.7% of children lived in areas with very high COI, and 25.3% lived in areas with very low SVI; in mid-childhood, 30.6% lived in areas with very high COI and 28.4% lived in areas with very low SVI. Linear mixed-effects models revealed that at every life stage, children who resided in areas with higher COI (vs very low COI) had lower mean BMI trajectories and lower risk of obesity from childhood to adolescence, independent of family sociodemographic and prenatal characteristics. For example, among children with obesity at age 10 years, the risk ratio was 0.21 (95% CI, 0.12-0.34) for very high COI at birth, 0.31 (95% CI, 0.20-0.51) for high COI at birth, 0.46 (95% CI, 0.28-0.74) for moderate COI at birth, and 0.53 (95% CI, 0.32-0.86) for low COI at birth. Similar patterns of findings were observed for children who resided in areas with lower SVI (vs very high SVI). For example, among children with obesity at age 10 years, the risk ratio was 0.17 (95% CI, 0.10-0.30) for very low SVI at birth, 0.20 (95% CI, 0.11-0.35) for low SVI at birth, 0.42 (95% CI, 0.24-0.75) for moderate SVI at birth, and 0.43 (95% CI, 0.24-0.76) for high SVI at birth. For both indices, effect estimates for mean BMI difference and obesity risk were larger at an older age of outcome measurement. In addition, exposure to COI or SVI at birth was associated with the most substantial difference in subsequent mean BMI and risk of obesity compared with exposure at later life stages.
CONCLUSIONS AND RELEVANCE: In this cohort study, residing in higher-opportunity and lower-vulnerability neighborhoods in early life, especially at birth, was associated with a lower mean BMI trajectory and a lower risk of obesity from childhood to adolescence. Future research should clarify whether initiatives or policies that alter specific components of neighborhood environment would be beneficial in preventing excess weight in children
Stability of the vaginal, oral, and gut microbiota across pregnancy among African American women: the effect of socioeconomic status and antibiotic exposure
Objective A growing body of research has investigated the human microbiota and pregnancy outcomes, especially preterm birth. Most studies of the prenatal microbiota have focused on the vagina, with fewer investigating other body sites during pregnancy. Although pregnancy involves profound hormonal, immunological and metabolic changes, few studies have investigated either shifts in microbiota composition across pregnancy at different body sites or variation in composition at any site that may be explained by maternal characteristics. The purpose of this study was to investigate: (1) the stability of the vaginal, oral, and gut microbiota from early (8–14 weeks) through later (24–30 weeks) pregnancy among African American women according to measures of socioeconomic status, accounting for prenatal antibiotic use; (2) whether measures of socioeconomic status are associated with changes in microbiota composition over pregnancy; and (3) whether exposure to prenatal antibiotics mediate any observed associations between measures of socioeconomic status and stability of the vaginal, oral, and gut microbiota across pregnancy. Methods We used paired vaginal, oral, or gut samples available for 16S rRNA gene sequencing from two time points in pregnancy (8–14 and 24–30 weeks) to compare within-woman changes in measures of alpha diversity (Shannon and Chao1) and beta-diversity (Bray–Curtis dissimilarity) among pregnant African American women (n = 110). Multivariable linear regression was used to examine the effect of level of education and prenatal health insurance as explanatory variables for changes in diversity, considering antibiotic exposure as a mediator, adjusting for age, obstetrical history, and weeks between sampling. Results For the oral and gut microbiota, there were no significant associations between measures of socioeconomic status or prenatal antibiotic use and change in Shannon or Chao1 diversity. For the vaginal microbiota, low level of education (high school or less) was associated with an increase in Shannon and Chao1 diversity over pregnancy, with minimal attenuation when controlling for prenatal antibiotic use. Conversely, for within-woman Bray–Curtis dissimilarity for early compared to later pregnancy, low level of education and prenatal antibiotics were associated with greater dissimilarity for the oral and gut sites, with minimal attenuation when controlling for prenatal antibiotics, and no difference in dissimilarity for the vaginal site. Conclusions Measures of maternal socioeconomic status are variably associated with changes in diversity across pregnancy for the vaginal, oral, and gut microbiota, with minimal attenuation by prenatal antibiotic exposure. Studies that evaluate stability of the microbiota across pregnancy in association with health outcomes themselves associated with socioeconomic status (such as preterm birth) should incorporate measures of socioeconomic status to avoid finding spurious relationships
Developing a National-Scale Exposure Index for Combined Environmental Hazards and Social Stressors and Applications to the Environmental Influences on Child Health Outcomes (ECHO) Cohort
Tools for assessing multiple exposures across several domains (e.g., physical, chemical, and social) are of growing importance in social and environmental epidemiology because of their value in uncovering disparities and their impact on health outcomes. Here we describe work done within the Environmental influences on Child Health Outcomes (ECHO)-wide Cohort Study to build a combined exposure index. Our index considered both environmental hazards and social stressors simultaneously with national coverage for a 10-year period. Our goal was to build this index and demonstrate its utility for assessing differences in exposure for pregnancies enrolled in the ECHO-wide Cohort Study. Our unitless combined exposure index, which collapses census-tract level data into a single relative measure of exposure ranging from 0-1 (where higher values indicate higher exposure to hazards), includes indicators for major air pollutants and air toxics, features of the built environment, traffic exposures, and social determinants of health (e.g., lower educational attainment) drawn from existing data sources. We observed temporal and geographic variations in index values, with exposures being highest among participants living in the West and Northeast regions. Pregnant people who identified as Black or Hispanic (of any race) were at higher risk of living in a high exposure census tract (defined as an index value above 0.5) relative to those who identified as White or non-Hispanic. Index values were also higher for pregnant people with lower educational attainment. Several recommendations follow from our work, including that environmental and social stressor datasets with higher spatial and temporal resolutions are needed to ensure index-based tools fully capture the total environmental context
Glycosylation of immunoglobulin G is regulated by a large network of genes pleiotropic with inflammatory diseases
Effector functions of immunoglobulin G (IgG) are regulated by the composition of a glycan moiety, thus affecting activity of the immune system. Aberrant glycosylation of IgG has been observed in many diseases, but little is understood about the underlying mechanisms. We performed a genome-wide association study of IgG N-glycosylation (N = 8090) and, using a data-driven network approach, suggested how associated loci form a functional network. We confirmed in vitro that knockdown of IKZF1 decreases the expression of fucosyltransferase FUT8, resulting in increased levels of fucosylated glycans, and suggest that RUNX1 and RUNX3, together with SMARCB1, regulate expression of glycosyltransferase MGAT3. We also show that variants affecting the expression of genes involved in the regulation of glycoenzymes colocalize with variants affecting risk for inflammatory diseases. This study provides new evidence that variation in key transcription factors coupled with regulatory variation in glycogenes modifies IgG glycosylation and has influence on inflammatory diseases
A plasmid DNA-launched SARS-CoV-2 reverse genetics system and coronavirus toolkit for COVID-19 research
The recent emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), the underlying cause of Coronavirus Disease 2019 (COVID-19), has led to a worldwide pandemic causing substantial morbidity, mortality, and economic devastation. In response, many laboratories have redirected attention to SARS-CoV-2, meaning there is an urgent need for tools that can be used in laboratories unaccustomed to working with coronaviruses. Here we report a range of tools for SARS-CoV-2 research. First, we describe a facile single plasmid SARS-CoV-2 reverse genetics system that is simple to genetically manipulate and can be used to rescue infectious virus through transient transfection (without in vitro transcription or additional expression plasmids). The rescue system is accompanied by our panel of SARS-CoV-2 antibodies (against nearly every viral protein), SARS-CoV-2 clinical isolates, and SARS-CoV-2 permissive cell lines, which are all openly available to the scientific community. Using these tools, we demonstrate here that the controversial ORF10 protein is expressed in infected cells. Furthermore, we show that the promising repurposed antiviral activity of apilimod is dependent on TMPRSS2 expression. Altogether, our SARS-CoV-2 toolkit, which can be directly accessed via our website at https://mrcppu-covid.bio/, constitutes a resource with considerable potential to advance COVID-19 vaccine design, drug testing, and discovery science
Opportunities for understanding the COVID-19 pandemic and child health in the United States: the Environmental influences on Child Health Outcomes (ECHO) program
Objective Ongoing pediatric cohort studies offer opportunities to investigate the impact of the COVID-19 pandemic on children's health. With well-characterized data from tens of thousands of US children, the Environmental influences on Child Health Outcomes (ECHO) Program offers such an opportunity. Methods ECHO enrolled children and their caregivers from community- and clinic-based pediatric cohort studies. Extant data from each of the cohorts were pooled and harmonized. In 2019, cohorts began collecting data under a common protocol, and data collection is ongoing with a focus on early life environmental exposures and five child health domains: birth outcomes, neurodevelopment, obesity, respiratory, and positive health. In April of 2020, ECHO began collecting a questionnaire designed to assess COVID-19 infection and the pandemic's impact on families. We describe and summarize the characteristics of children who participated in the ECHO Program during the COVID-19 pandemic and novel opportunities for scientific advancement. Results This sample (n = 13,725) was diverse by child age (31% early childhood, 41% middle childhood, and 16% adolescence up to age 21), sex (49% female), race (64% White, 15% Black, 3% Asian, 2% American Indian or Alaska Native, <1% Native Hawaiian or Pacific Islander, 10% Multiple race and 2% Other race), Hispanic ethnicity (22% Hispanic), and were similarly distributed across the four United States Census regions and Puerto Rico. Conclusion ECHO data collected during the pandemic can be used to conduct solution-oriented research to inform the development of programs and policies to support child health during the pandemic and in the post-pandemic era
- …