781 research outputs found

    On the relationship between MOND and DM

    Full text link
    Numerous astrophysical observations have shown that classical Newtonian dynamics fails on galactic scales and beyond, if only visible matter is taken into account. The two most popular theoretical concepts dealing with this problem are Dark Matter (DM) and Modified Newtonian Dynamics (MOND). In the first part of this paper it is demonstrated that a generalized MOND equation can be derived in the framework of Newtonian Dark Matter theory. For systems satisfying a fixed relationship between the gravitational fields caused by DM and visible matter, this generalized MOND equation reduces to the traditional MOND law, first postulated by Milgrom. Therefore, we come to the conclusion that traditional MOND can also be interpreted as special limit case of DM theory. In the second part, a formal derivation of the Tully-Fisher relation is discussed.Comment: 5 pages, accepted for publication in Astrophys. J. Letter

    Psychosocial Predictors of Metabolic Syndrome among Latino Groups in the Multi-Ethnic Study of Atherosclerosis (MESA).

    Get PDF
    ObjectiveWe sought to determine the contribution of psychological variables to risk for metabolic syndrome (MetS) among Latinos enrolled in the Multi-Ethnic Study of Atherosclerosis (MESA), and to investigate whether social support moderates these associations, and whether inflammatory markers mediate the association between psychological variables and MetS.Research design and methodsCross-sectional analyses at study baseline were conducted with a national Latino cohort (n = 1,388) that included Mexican Americans, Dominican Americans, Puerto Rican Americans and Central/South Americans. Hierarchical logistic regression analyses were conducted to test the effects of psychosocial variables (chronic stress, depressive symptoms, and social support) on MetS. In addition, separate subgroup-specific models, controlling for nationality, age, gender, socioeconomic position, language spoken at home, exercise, smoking and drinking status, and testing for the effects of chronic stress, depressive symptoms and inflammation (IL-6, CRP, fibrinogen) in predicting risk for MetS were conducted.ResultsIn the overall sample, high chronic stress independently predicted risk for MetS, however this association was found to be significant only in Mexican Americans and Puerto Rican Americans. Social support did not moderate the associations between chronic stress and MetS for any group. Chronic stress was not associated with inflammatory markers in either the overall sample or in each group.ConclusionsOur results suggest a differential contribution of chronic stress to the prevalence of MetS by national groups

    Stationarity, soft ergodicity, and entropy in relativistic systems

    Get PDF
    Recent molecular dynamics simulations show that a dilute relativistic gas equilibrates to a Juettner velocity distribution if ensemble velocities are measured simultaneously in the observer frame. The analysis of relativistic Brownian motion processes, on the other hand, implies that stationary one-particle distributions can differ depending on the underlying time-parameterizations. Using molecular dynamics simulations, we demonstrate how this relativistic phenomenon can be understood within a deterministic model system. We show that, depending on the time-parameterization, one can distinguish different types of soft ergodicity on the level of the one-particle distributions. Our analysis further reveals a close connection between time parameters and entropy in special relativity. A combination of different time-parameterizations can potentially be useful in simulations that combine molecular dynamics algorithms with randomized particle creation, annihilation, or decay processes.Comment: 4 page

    Discovering dynamics and parameters of nonlinear oscillatory and chaotic systems from partial observations

    Full text link
    Despite rapid progress in live-imaging techniques, many complex biophysical and biochemical systems remain only partially observable, thus posing the challenge to identify valid theoretical models and estimate their parameters from an incomplete set of experimentally accessible time series. Here, we combine sensitivity methods and VoteFair popularity ranking to construct an automated hidden dynamics inference framework that can discover predictive nonlinear dynamical models for both observable and latent variables from noise-corrupted incomplete data in oscillatory and chaotic systems. After validating the framework for prototypical FitzHugh-Nagumo oscillations, we demonstrate its applicability to experimental data from squid neuron activity measurements and Belousov-Zhabotinsky (BZ) reactions, as well as to the Lorenz system in the chaotic regime.Comment: 37 pages, 18 figure

    Single to Double Hump Transition in the Equilibrium Distribution Function of Relativistic Particles

    Get PDF
    We unveil a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-J\"uttner distributions, all exhibiting the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on two-dimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.Comment: 5 pages, 5 figure

    Non-analytic microscopic phase transitions and temperature oscillations in the microcanonical ensemble: An exactly solvable 1d-model for evaporation

    Full text link
    We calculate exactly both the microcanonical and canonical thermodynamic functions (TDFs) for a one-dimensional model system with piecewise constant Lennard-Jones type pair interactions. In the case of an isolated NN-particle system, the microcanonical TDFs exhibit (N-1) singular (non-analytic) microscopic phase transitions of the formal order N/2, separating N energetically different evaporation (dissociation) states. In a suitably designed evaporation experiment, these types of phase transitions should manifest themselves in the form of pressure and temperature oscillations, indicating cooling by evaporation. In the presence of a heat bath (thermostat), such oscillations are absent, but the canonical heat capacity shows a characteristic peak, indicating the temperature-induced dissociation of the one-dimensional chain. The distribution of complex zeros (DOZ) of the canonical partition may be used to identify different degrees of dissociation in the canonical ensemble.Comment: version accepted for publication in PRE, minor additions in the text, references adde

    A System for Series Magnetic Measurements of the LHC Main Quadrupoles

    Get PDF
    More than 400 twin aperture lattice quadrupoles are needed for the Large Hadron Collider (LHC) which is under construction at CERN. The main quadrupole is assembled with correction magnets in a common cryostat called the Short Straight Section (SSS). We plan to measure all SSS's in cold conditions with an unprecedented accuracy: integrated gradient of the field within 150 ppm, harmonics in a range of 1 to 5 ppm, magnetic axis of all elements within 0.1 mm and their field direction within 0.2 mrad. In this paper we describe the automatic measurement system that we have designed, built and calibrated. Based on the results obtained on the two first prototypes of the SSS's (SSS3 and SSS4) we show that this system meets all above requirements

    Equine atypical myopathy associated with sycamore seed ingestion in a Przewalski foal

    Get PDF
    One of the 172 UK cases of equine atypical myopathy (EAM) reported to the Atypical Myopathy Alert Group (AMAG) in 2014 was that of a five-month old male Przewalski horse (Equus ferus przewalskii), resident at ZSL Whipsnade Zoo, UK. The foal presented initially with sudden-onset and repeated stretching of the neck as if dysphagic, with progressive weakness (including lying down), sweating and an unresponsive demeanour. General anaesthesia, induced with a combination of etorphine, midazolam and hyaluronidase, was required for each examination and subsequent treatment of the foal. Initial biochemical analysis showed a markedly increased plasma creatine kinase (CK) activity of 105,001 U/L, an increased aspartate amino transferase (AST) activity of 4194 U/L and a mildly increased inorganic phosphorus concentration of 2.35 mmol/L. The foal was unresponsive to treatment and had to be euthanased. Skeletal musculature and the myocardium showed the most significant pathological changes, with histological evidence of rhabdomyolysis, whilst urine organic acid analysis and an abnormal organic acid serum profile were supportive of multiple acyl Co-A dehydrogenase deficiency typical of EAM. This is the first description of EAM in a non-domestic equid

    Relativistic diffusion processes and random walk models

    Get PDF
    The nonrelativistic standard model for a continuous, one-parameter diffusion process in position space is the Wiener process. As well-known, the Gaussian transition probability density function (PDF) of this process is in conflict with special relativity, as it permits particles to propagate faster than the speed of light. A frequently considered alternative is provided by the telegraph equation, whose solutions avoid superluminal propagation speeds but suffer from singular (non-continuous) diffusion fronts on the light cone, which are unlikely to exist for massive particles. It is therefore advisable to explore other alternatives as well. In this paper, a generalized Wiener process is proposed that is continuous, avoids superluminal propagation, and reduces to the standard Wiener process in the non-relativistic limit. The corresponding relativistic diffusion propagator is obtained directly from the nonrelativistic Wiener propagator, by rewriting the latter in terms of an integral over actions. The resulting relativistic process is non-Markovian, in accordance with the known fact that nontrivial continuous, relativistic Markov processes in position space cannot exist. Hence, the proposed process defines a consistent relativistic diffusion model for massive particles and provides a viable alternative to the solutions of the telegraph equation.Comment: v3: final, shortened version to appear in Phys. Rev.
    • …
    corecore