4 research outputs found

    Direct measurement of the upper critical field in a cuprate superconductor

    Get PDF
    The upper critical field Hc2 is a fundamental measure of the pairing strength, yet there is no agreement on its magnitude and doping dependence in cuprate superconductors. We have used thermal conductivity as a direct probe of Hc2 in the cuprates YBa2Cu3Oy and YBa2Cu4O8 to show that there is no vortex liquid at T = 0, allowing us to use high-field resistivity measurements to map out the doping dependence of Hc2 across the phase diagram. Hc2(p) exhibits two peaks, each located at a critical point where the Fermi surface undergoes a transformation. The condensation energy obtained directly from Hc2, and previous Hc1 data, undergoes a 20-fold collapse below the higher critical point. These data provide quantitative information on the impact of competing phases in suppressing superconductivity in cuprates.Comment: to appear in Nature Communications; Supplementary Information file available upon reques

    Onset field for Fermi-surface reconstruction in the cuprate superconductor YBa 2 Cu 3 O

    No full text
    20 pages and 5 figures in Main text + 9 pages and 6 figures in Supplementary materialQuantum oscillations and negative Hall and Seebeck coefficients at low temperature and high magnetic field have shown the Fermi surface of underdoped cuprates to contain a small closed electron pocket. It is thought to result from a reconstruction by charge order, but whether it is the order seen by NMR and ultrasound above a threshold field or the short-range modulations seen by X-ray diffraction in zero field is unclear. Here we use measurements of the thermal Hall conductivity in YBCO to show that Fermi-surface reconstruction occurs only above a sharply defined onset field, equal to the transition field seen in ultrasound. This reveals that electrons do not experience long-range broken translational symmetry in the zero-field ground state, and hence in zero field there is no quantum critical point for the onset of charge order as a function of doping
    corecore