101 research outputs found
On Computing the Average Distance for Some Chordal-Like Graphs
The Wiener index of a graph G is the sum of all its distances. Up to renormalization, it is also the average distance in G. The problem of computing this parameter has different applications in chemistry and networks. We here study when it can be done in truly subquadratic time (in the size n+m of the input) on n-vertex m-edge graphs. Our main result is a complete answer to this question, assuming the Strong Exponential-Time Hypothesis (SETH), for all the hereditary subclasses of chordal graphs. Interestingly, the exact same result also holds for the diameter problem. The case of non-hereditary chordal subclasses happens to be more challenging. For the chordal Helly graphs we propose an intricate O?(m^{3/2})-time algorithm for computing the Wiener index, where m denotes the number of edges. We complete our results with the first known linear-time algorithm for this problem on the dually chordal graphs. The former algorithm also computes the median set
Fully polynomial FPT algorithms for some classes of bounded clique-width graphs
Parameterized complexity theory has enabled a refined classification of the
difficulty of NP-hard optimization problems on graphs with respect to key
structural properties, and so to a better understanding of their true
difficulties. More recently, hardness results for problems in P were achieved
using reasonable complexity theoretic assumptions such as: Strong Exponential
Time Hypothesis (SETH), 3SUM and All-Pairs Shortest-Paths (APSP). According to
these assumptions, many graph theoretic problems do not admit truly
subquadratic algorithms, nor even truly subcubic algorithms (Williams and
Williams, FOCS 2010 and Abboud, Grandoni, Williams, SODA 2015). A central
technique used to tackle the difficulty of the above mentioned problems is
fixed-parameter algorithms for polynomial-time problems with polynomial
dependency in the fixed parameter (P-FPT). This technique was introduced by
Abboud, Williams and Wang in SODA 2016 and continued by Husfeldt (IPEC 2016)
and Fomin et al. (SODA 2017), using the treewidth as a parameter. Applying this
technique to clique-width, another important graph parameter, remained to be
done. In this paper we study several graph theoretic problems for which
hardness results exist such as cycle problems (triangle detection, triangle
counting, girth, diameter), distance problems (diameter, eccentricities, Gromov
hyperbolicity, betweenness centrality) and maximum matching. We provide
hardness results and fully polynomial FPT algorithms, using clique-width and
some of its upper-bounds as parameters (split-width, modular-width and
-sparseness). We believe that our most important result is an -time algorithm for computing a maximum matching where
is either the modular-width or the -sparseness. The latter generalizes
many algorithms that have been introduced so far for specific subclasses such
as cographs, -lite graphs, -extendible graphs and -tidy
graphs. Our algorithms are based on preprocessing methods using modular
decomposition, split decomposition and primeval decomposition. Thus they can
also be generalized to some graph classes with unbounded clique-width
Isometric Embeddings in Trees and Their Use in Distance Problems
International audienceWe present powerful techniques for computing the diameter, all the eccentricities, and other related distance problems on some geometric graph classes, by exploiting their "tree-likeness" properties. We illustrate the usefulness of our approach as follows: (1) We propose a subquadratic-time algorithm for computing all eccentricities on partial cubes of bounded lattice dimension and isometric dimension O(n^{0.5−ε}). This is one of the first positive results achieved for the diameter problem on a subclass of partial cubes beyond median graphs. (2) Then, we obtain almost linear-time algorithms for computing all eccentricities in some classes of face-regular plane graphs, including benzenoid systems, with applications to chemistry. Previously, only a linear-time algorithm for computing the diameter and the center was known (and an O(n^{5/3})-time algorithm for computing all the eccentricities). (3) We also present an almost linear-time algorithm for computing the eccentricities in a polygon graph with an additive one-sided error of at most 2. (4) Finally, on any cube-free median graph, we can compute its absolute center in almost linear time. Independently from this work, Bergé and Habib have recently presented a linear-time algorithm for computing all eccentricities in this graph class (LAGOS'21), which also implies a linear-time algorithm for the absolute center problem. Our strategy here consists in exploiting the existence of some embeddings of these graphs in either a system or a product of trees, or in a single tree but where each vertex of the graph is embedded in a subset of nodes. While this may look like a natural idea, the way it can be done efficiently, which is our main technical contribution in the paper, is surprisingly intricate
Balancing graph Voronoi diagrams with one more vertex
Let be a graph with unit-length edges and nonnegative costs
assigned to its vertices. Being given a list of pairwise different vertices
, the {\em prioritized Voronoi diagram} of with
respect to is the partition of in subsets so
that, for every with , a vertex is in if and
only if is a closest vertex to in and there is no closest vertex
to in within the subset . For every
with , the {\em load} of vertex equals the sum of the
costs of all vertices in . The load of equals the maximum load of a
vertex in . We study the problem of adding one more vertex at the end of
in order to minimize the load. This problem occurs in the context of
optimally locating a new service facility ({\it e.g.}, a school or a hospital)
while taking into account already existing facilities, and with the goal of
minimizing the maximum congestion at a site. There is a brute-force algorithm
for solving this problem in time on -vertex -edge graphs.
We prove a matching time lower bound for the special case where
and , assuming the so called Hitting Set Conjecture of Abboud et al. On
the positive side, we present simple linear-time algorithms for this problem on
cliques, paths and cycles, and almost linear-time algorithms for trees, proper
interval graphs and (assuming to be a constant) bounded-treewidth graphs
Obstructions to Faster Diameter Computation: Asteroidal Sets
Full version of an IPEC'22 paperAn extremity is a vertex such that the removal of its closed neighbourhood does not increase the number of connected components. Let be the class of all connected graphs whose quotient graph obtained from modular decomposition contains no more than pairwise nonadjacent extremities. Our main contributions are as follows. First, we prove that the diameter of every -edge graph in can be computed in deterministic time. We then improve the runtime to linear for all graphs with bounded clique-number. Furthermore, we can compute an additive -approximation of all vertex eccentricities in deterministic time. This is in sharp contrast with general -edge graphs for which, under the Strong Exponential Time Hypothesis (SETH), one cannot compute the diameter in time for any . As important special cases of our main result, we derive an -time algorithm for exact diameter computation within dominating pair graphs of diameter at least six, and an -time algorithm for this problem on graphs of asteroidal number at most . We end up presenting an improved algorithm for chordal graphs of bounded asteroidal number, and a partial extension of our results to the larger class of all graphs with a dominating target of bounded cardinality. Our time upper bounds in the paper are shown to be essentially optimal under plausible complexity assumptions
- …