4,063 research outputs found

    A Factor-Adjusted Multiple Testing Procedure with Application to Mutual Fund Selection

    Full text link
    In this article, we propose a factor-adjusted multiple testing (FAT) procedure based on factor-adjusted p-values in a linear factor model involving some observable and unobservable factors, for the purpose of selecting skilled funds in empirical finance. The factor-adjusted p-values were obtained after extracting the latent common factors by the principal component method. Under some mild conditions, the false discovery proportion can be consistently estimated even if the idiosyncratic errors are allowed to be weakly correlated across units. Furthermore, by appropriately setting a sequence of threshold values approaching zero, the proposed FAT procedure enjoys model selection consistency. Extensive simulation studies and a real data analysis for selecting skilled funds in the U.S. financial market are presented to illustrate the practical utility of the proposed method. Supplementary materials for this article are available online

    Leveraging Node Attributes for Incomplete Relational Data

    Full text link
    Relational data are usually highly incomplete in practice, which inspires us to leverage side information to improve the performance of community detection and link prediction. This paper presents a Bayesian probabilistic approach that incorporates various kinds of node attributes encoded in binary form in relational models with Poisson likelihood. Our method works flexibly with both directed and undirected relational networks. The inference can be done by efficient Gibbs sampling which leverages sparsity of both networks and node attributes. Extensive experiments show that our models achieve the state-of-the-art link prediction results, especially with highly incomplete relational data.Comment: Appearing in ICML 201

    Dirichlet belief networks for topic structure learning

    Full text link
    Recently, considerable research effort has been devoted to developing deep architectures for topic models to learn topic structures. Although several deep models have been proposed to learn better topic proportions of documents, how to leverage the benefits of deep structures for learning word distributions of topics has not yet been rigorously studied. Here we propose a new multi-layer generative process on word distributions of topics, where each layer consists of a set of topics and each topic is drawn from a mixture of the topics of the layer above. As the topics in all layers can be directly interpreted by words, the proposed model is able to discover interpretable topic hierarchies. As a self-contained module, our model can be flexibly adapted to different kinds of topic models to improve their modelling accuracy and interpretability. Extensive experiments on text corpora demonstrate the advantages of the proposed model.Comment: accepted in NIPS 201

    MetaLDA: a Topic Model that Efficiently Incorporates Meta information

    Full text link
    Besides the text content, documents and their associated words usually come with rich sets of meta informa- tion, such as categories of documents and semantic/syntactic features of words, like those encoded in word embeddings. Incorporating such meta information directly into the generative process of topic models can improve modelling accuracy and topic quality, especially in the case where the word-occurrence information in the training data is insufficient. In this paper, we present a topic model, called MetaLDA, which is able to leverage either document or word meta information, or both of them jointly. With two data argumentation techniques, we can derive an efficient Gibbs sampling algorithm, which benefits from the fully local conjugacy of the model. Moreover, the algorithm is favoured by the sparsity of the meta information. Extensive experiments on several real world datasets demonstrate that our model achieves comparable or improved performance in terms of both perplexity and topic quality, particularly in handling sparse texts. In addition, compared with other models using meta information, our model runs significantly faster.Comment: To appear in ICDM 201
    • …
    corecore