41 research outputs found

    The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines

    Get PDF
    BACKGROUND Although paclitaxel is used for hormone-resistant prostate cancer, relapse definitely occurs later. Details of the molecular mechanism responsible for paclitaxel- resistance remain unclear. METHODS We established paclitaxel-resistant cells, DU145-TxR and PC-3-TxR from parent DU145 and PC-3. To characterize these cells, we examined cross-resistance to other anticancer drugs. Expression of several potential genes that had been related to drug-resistance was compared with parent cells by RT-PCR and Western blotting. Methylation analysis of multiple drug resistance (MDR1) promoter was carried out using bisulfite-modified DNA from cell lines. Knockdown experiments using small interfering RNA (siRNA) were also performed to confirm responsibility of drug-resistance. Finally, cDNA microarray was performed to quantify gene expression in PC-3 and PC-3-TxR cells. RESULTS The IC 50 for paclitaxel in DU145-TxR and PC-3-TxR was 34.0- and 43.4-fold higher than that in both parent cells, respectively. Both cells showed cross-resistance to some drugs, but not to VP-16 and cisplatin. Methylation analysis revealed that methylated CpG sites of MDR1 promoter in DU145 and PC-3 cells were demethylated in DU145-TxR cells, but not in PC-3-TxR cells. Knockdown of P-glycoprotein (P-gp), which was up-regulated in resistant cells, by MDR-1 siRNA restored paclitaxel sensitivity in DU145-TxR but not in PC-3-TxR, indicating that up-regulation of P-gp was not always main cause of paclitaxel-resistance. Microarray analysis identified 201 (1.34%) up-regulated genes and 218 (1.45%) out of screened genes in PC-3-TxR. CONCLUSIONS Our data will provide molecular mechanisms of paclitaxel-resistance and be useful for screening target genes to diagnose paclitaxel sensitivity. Prostate 67: 955–967, 2007. © 2007 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/56002/1/20581_ftp.pd

    N-(4-iodophenyl)-N′-(2-chloroethyl)urea as a microtubule disrupter: in vitro and in vivo profiling of antitumoral activity on CT-26 murine colon carcinoma cell line cultured and grafted to mice

    Get PDF
    The antitumoral profile of the microtubule disrupter N-(4-iodophenyl)-N′-(2-chloroethyl)urea (ICEU) was characterised in vitro and in vivo using the CT-26 colon carcinoma cell line, on the basis of the drug uptake by the cells, the modifications of cell cycle, and β-tubulin and lipid membrane profiles. N-(4-iodophenyl)-N′-(2-chloroethyl)urea exhibited a rapid and dose-dependent uptake by CT-26 cells suggesting its passive diffusion through the membranes. Intraperitoneally injected ICEU biodistributed into the grafted CT-26 tumour, resulting thus in a significant tumour growth inhibition (TGI). N-(4-iodophenyl)-N′-(2-chloroethyl)urea was also observed to accumulate within colon tissue. Tumour growth inhibition was associated with a slight increase in the number of G2 tetraploid tumour cells in vivo, whereas G2 blockage was more obvious in vitro. The phenotype of β-tubulin alkylation that was clearly demonstrated in vitro was undetectable in vivo. Nuclear magnetic resonance analysis showed that cells blocked in G2 phase underwent apoptosis, as confirmed by an increase in the methylene group resonance of mobile lipids, parallel to sub-G1 accumulation of the cells. In vivo, a decrease of the signals of both the phospholipid precursors and the products of membrane degradation occurred concomitantly with TGI. This multi-analysis established, at least partly, the ICEU activity profile, in vitro and in vivo, providing additional data in favour of ICEU as a tubulin-interacting drug accumulating within the intestinal tract. This may provide a starting point for researches for future efficacious tubulin-interacting drugs for the treatment of colorectal cancers

    Legal implications of fund-raising for institutions of higher learning in New England

    Full text link
    Thesis (M.S.)--Boston UniversityPLEASE NOTE: Boston University Libraries did not receive an Authorization To Manage form for this thesis or dissertation. It is therefore not openly accessible, though it may be available by request. If you are the author or principal advisor of this work and would like to request open access for it, please contact us at [email protected]. Thank you.2031-01-0
    corecore