27 research outputs found

    Identification of Patients with Similar Gait Compensating Strategies Due to Unilateral Hip Osteoarthritis and the Effect of Total Hip Replacement: A Secondary Analysis

    Get PDF
    Despite good clinical functional outcome, deficits in gait biomechanics exist 2 years after total hip replacement surgery. The aims of this research were (1) to group patients showing similar gait adaptations to hip osteoarthritis and (2) to investigate the effect of the surgical treatment on gait kinematics and external joint moments. In a secondary analysis, gait data of 51 patients with unilateral hip osteoarthritis were analyzed. A k-means cluster analysis was performed on scores derived via a principal component analysis of the gait kinematics. Preoperative and postoperative datasets were statistically tested between clusters and 46 healthy controls. The first three principal components incorporated hip flexion/extension, pelvic tilt, foot progression angle and thorax tilt. Two clusters were discriminated best by the peak hip extension during terminal stance. Both clusters deviated from healthy controls in spatio-temporal, kinematic and kinetic parameters. The cluster with less hip extension deviated significantly more. The clusters improved postoperatively but differences to healthy controls were still present one year after surgery. A poor preoperative gait pattern in patients with unilateral hip osteoarthritis is associated with worse gait kinematics after total hip replacement. Further research should focus on the identification of patients who can benefit from an adapted or individualized rehabilitation program

    Shoulder load during synchronous handcycling and handrim wheelchair propulsion in persons with paraplegia

    Get PDF
    Objective: To compare the shoulder load during handcycling and wheelchair propulsion under similar conditions of external power in persons with spinal cord injury. Design: Cross-sectional. Subjects: Eight men with spinal cord injury. Methods: Kinetics and kinematics were measured during handbike and wheelchair propulsion at 25, 35, 45 and 55 W on a treadmill. Shoulder load (glenohumeral contact forces, relative muscle forces) was calculated with the Delft Shoulder and Elbow Model. Results: At all power output levels, glenohumeral contact forces were significantly lower during handcycling compared with wheelchair propulsion (p < 0.001). At 55 W, the mean glenohumeral contact force was 345 N for handcycling, whereas it was 585 N for wheelchair propulsion. Also, relative muscle forces were lower during handcycling. The largest differences between handbike and wheelchair propulsion were found in the supraspinatus (4.5% vs. 20.7%), infraspinatus (3.7% vs. 16.5%) and biceps (5.0% vs. 17.7%). Conclusion: Due to continuous force application in handcycling, shoulder load was lower compared with wheelchair propulsion. Furthermore, muscles that are prone to overuse injuries were less stressed during handcycling. Therefore, handcycling may be a good alternative for outdoor mobility and may help prevent overuse injuries of the shoulder complex. © 2012 The Authors

    Knee load distribution in hip osteoarthritis patients after total hip replacement

    No full text
    Reduced external knee adduction moments in the second half of stance after total hip replacement have been reported in hip osteoarthritis patients. This reduction is thought to shift the load from the medial to the lateral knee compartment and as such increase the risk for knee osteoarthritis. The knee adduction moment is a surrogate for the load distribution between the medial and lateral compartments of the knee and not a valid measure for the tibiofemoral contact forces which are the result of externally applied forces and muscle forces. The purpose of this study was to investigate whether the distribution of the tibiofemoral contact forces over the knee compartments in unilateral hip osteoarthritis patients 1 year after receiving a primary total hip replacement differs from healthy controls. Musculoskeletal modeling on gait was performed in OpenSim using the detailed knee model of Lerner et al. (2015) for 19 patients as well as for 15 healthy controls of similar age. Knee adduction moments were calculated by the inverse dynamics analysis, medial and lateral tibiofemoral contact forces with the joint reaction force analysis. Moments and contact forces of patients and controls were compared using Statistical Parametric Mapping two-sample t-tests. Knee adduction moments and medial tibiofemoral contact forces of both the ipsi- and contralateral leg were not significantly different compared to healthy controls. The contralateral leg showed 14% higher medial tibiofemoral contact forces compared to the ipsilateral (operated) leg during the second half of stance. During the first half of stance, the lateral tibiofemoral contact force of the contralateral leg was 39% lower and the ratio 32% lower compared to healthy controls. In contrast, during the second half of stance the forces were significantly higher (39 and 26%, respectively) compared to healthy controls. The higher ratio indicates a changed distribution whereas the increased lateral tibiofemoral contact forces indicate a higher lateral knee joint loading in the contralateral leg in OA patients after total hip replacement (THR). Musculoskeletal modeling using a detailed knee model can be useful to detect differences in the load distribution between the medial and lateral knee compartment which cannot be verified with the knee adduction moment

    Effect of total joint replacement in hip osteoarthritis on serum COMP and its correlation with mechanical-functional parameters of gait analysis

    No full text
    Objective: To study the effect of total hip replacement (THR) on serum cartilage oligomeric matrix protein concentration (sCOMP) and its correlation with joint loading during gait in patients with unilateral hip osteoarthritis. Design: In this prospective multimodal (clinical, biomechanical, biochemical) study blood samples from 15 patients were taken before and up to three times after THR (7 days, 3 months and 1 year), each after a resting period of at least 30 min, for analysis of sCOMP. Gait analysis was performed before and 1 year after THR to determine hip and knee joint moments. Results: Seven days after THR, sCOMP decreased significantly compared to the preoperative measurement (p < 0.001). Three months and 1 year postoperatively, sCOMP reverted to concentrations in the range of the preoperative value. One year postoperatively, a linear correlation between sCOMP and the maximum hip flexion moment was indicated in the first half of the stance phase on the unaffected side (r = −0.736, p = 0.024). No further correlations could be determined. Conclusions: Surprisingly, the removal of a joint affected by osteoarthritis did not have a sustained effect on sCOMP. Both before and after THR there was no scientifically substantiated correlation between sCOMP and joint moments from gait analysis. Consequently, the examination of sCOMP is not useful to detect altered joint loads that may influence degenerative changes of adjacent joints after THR. The registration number in the German Registry of Clinical Trials is DRKS00015053

    Are changes in radiological leg alignment and femoral parameters after total hip replacement responsible for joint loading during gait?

    No full text
    Background: Gait kinematics after total hip replacement only partly explain the differences in the joint moments in the frontal plane between hip osteoarthritis patients after hip replacement and healthy controls. The goal of this study was to determine if total hip replacement surgery affects radiological leg alignment (Hip-Knee-Shaft-Angle, femoral offset, Neck-Shaft-Angle and varus/valgus alignment) and which of these parameters can explain the joint moments, additionally to the gait kinematics. Methods: 22 unilateral hip osteoarthritis patients who were scheduled for total hip replacement were included in the study. Preoperatively and 1 year postoperatively all patients had biplanar radiographic examinations and 3D gait analysis. Results: The operated leg showed significantly (P < 0.05) more varus (1.1°) as well as a larger femoral offset (+ 8 mm) and a larger Hip-Knee-Shaft-Angle (+ 1.3°) after total hip replacement; however no significant differences in the joint moments in the frontal plane compared to healthy controls were found. The hip moment (first half of stance) and the knee moments (first and second half of stance) were mostly determined by the varus/valgus alignment (29% and respectively 36% and 35%). The combination with a kinematic parameter (knee range of motion, foot progression angle) increased the predictive value for the knee moments. Conclusion: In our patient group the joint moments after total hip replacement did not differ from healthy controls, whereas radiological leg alignment parameters changed significantly after the total hip replacement. A combination of these radiological leg parameters, especially the varus alignment, and the deviating kinematics explain the joint moments in the frontal plane during gait after total hip replacement surgery. For surgeons it is important not to create too much of a structural varus alignment by implanting the new hip joint as varus alignment can increase the knee adduction moment and the risk for osteoarthritis of the medial knee compartment. Trial registration: This study was retrospectively registered with DRKS (German Clinical Trials Register) under the number DRKS00015053. Registered 1st of August 2018

    Force Application During Handcycling and Handrim Wheelchair Propulsion:An Initial Comparison

    No full text
    The aim of the study was to evaluate the external applied forces, the effectiveness of force application and the net shoulder moments of handcycling in comparison with handrim wheelchair propulsion at different inclines. Ten able-bodied men performed standardized exercises on a treadmill at inclines of 1%, 2.5% and 4% with an instrumented handbike and wheelchair that measured three-dimensional propulsion forces. The results showed that during handcycling significantly lower mean forces were applied at inclines of 2.5% (P <.001) and 4% (P <.001) and significantly lower peak forces were applied at all inclines (1%: P = .014, 2.5% and 4%: P <.001). At the 2.5% incline, where power output was the same for both devices, total forces (mean over trial) of 22.8 N and 27.5 N and peak forces of 40.1 N and 106.9 N were measured for handbike and wheelchair propulsion. The force effectiveness did not differ between the devices (P = .757); however, the effectiveness did increase with higher inclines during handcycling whereas it stayed constant over all inclines for wheelchair propulsion. The resulting peak net shoulder moments were lower for handcycling compared with wheelchair propulsion at all inclines (P <.001). These results confirm the assumption that handcycling is physically less straining

    Force Application During Handcycling and Handrim Wheelchair Propulsion: An Initial Comparison

    No full text
    The aim of the study was to evaluate the external applied forces, the effectiveness of force application and the net shoulder moments of handcycling in comparison with handrim wheelchair propulsion at different inclines. Ten able-bodied men performed standardized exercises on a treadmill at inclines of 1%, 2.5% and 4% with an instrumented handbike and wheelchair that measured three-dimensional propulsion forces. The results showed that during handcycling significantly lower mean forces were applied at inclines of 2.5% (P <.001) and 4% (P <.001) and significantly lower peak forces were applied at all inclines (1%: P = .014, 2.5% and 4%: P <.001). At the 2.5% incline, where power output was the same for both devices, total forces (mean over trial) of 22.8 N and 27.5 N and peak forces of 40.1 N and 106.9 N were measured for handbike and wheelchair propulsion. The force effectiveness did not differ between the devices (P = .757); however, the effectiveness did increase with higher inclines during handcycling whereas it stayed constant over all inclines for wheelchair propulsion. The resulting peak net shoulder moments were lower for handcycling compared with wheelchair propulsion at all inclines (P <.001). These results confirm the assumption that handcycling is physically less straining
    corecore