25 research outputs found
Visual cycle retinol dehydrogenase: Molecular and biochemical aspects
Item does not contain fulltextKatholieke Universiteit Nijmegen, 2 februari 1999Promotor : Deutman, A.F.
Co-promotor : Janssen, J.J.M
Visual cycle retinol dehydrogenase: molecular and biochemical aspects
Contains fulltext :
145539.pdf (Publisher’s version ) (Open Access)159 p
In-situ hybridization with digoxigenin-labeled RNA probes recognizing retinal pigment epithelial-specific mRNA
Contains fulltext :
24094___.PDF (publisher's version ) (Open Access
Analysis of the mouse gene encoding retinal pigment epithelial 11-cis retinol dehydrogenase
Item does not contain fulltex
Crystal structure of rhodopsin: a template for cone visual pigments and other G protein-coupled receptors.
The crystal structure of rhodopsin has provided the first three-dimensional molecular model for a G-protein-coupled receptor (GPCR). Alignment of the molecular model from the crystallographic structure with the helical axes seen in cryo-electron microscopic (cryo-EM) studies provides an opportunity to investigate the properties of the molecule as a function of orientation and location within the membrane. In addition, the structure provides a starting point for modeling and rational experimental approaches of the cone pigments, the GPCRs in cone cells responsible for color vision. Homology models of the cone pigments provide a means of understanding the roles of amino acid sequence differences that shift the absorption maximum of the retinal chromophore in the environments of different opsins
Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers.
The percentage of faecal samples containing resistant Echerichia coli and the proportion of resistant faecal E. coli were determined in three poultry populations: broilers and turkeys commonly given antibiotics, and laying hens treated with antibiotics relatively infrequently. Faecal samples of five human populations were also examined: turkey farmers, broiler farmers, laying-hen farmers, broiler slaughterers and turkey slaughterers. The MICs of antibiotics commonly used in poultry medicine were also determined. Ciprofloxacin-resistant isolates from these eight populations and from turkey meat were genotyped by pulsed-field gel electrophoresis (PFGE) after SmaI digestion. The proportion of samples containing resistant E. coli and the percentages of resistant E. coli were significantly higher in turkeys and broilers than in the laying-hen population. Resistance to nearly all antibiotics in faecal E. coli of turkey and broiler farmers, and of turkey and broiler slaughterers, was higher than in laying-hen farmers. Multiresistant isolates were common in turkey and broiler farmers but absent in laying-hen farmers. The same resistance patterns were found in turkeys, turkey farmers and turkey slaughterers and in broiler, broiler farmers and broiler slaughterers. The PFGE patterns of the isolates from the eight populations were quite heterogeneous, but E. coli with an identical PFGE pattern were isolated at two farms from a turkey and the farmer, and also from a broiler and a broiler farmer from different farms. Moreover, three E. coli isolates from turkey meat were identical to faecal isolates from turkeys. The results of this study strongly indicate that transmission of resistant clones and resistance plasmids of E. coli from poultry to humans commonly occurs
Characterization of a dehydrogenase activity responsible for oxidation of 11-cis-retinol in the retinal pigment epithelium of mice with a disrupted RDH5 gene. A model for the human hereditary disease fundus albipunctatus.
Contains fulltext :
185582.pdf (Publisher’s version ) (Open Access)In the vertebrate retina, the final step of visual chromophore production is the oxidation of 11-cis-retinol to 11-cis-retinal. This reaction is catalyzed by 11-cis-retinol dehydrogenases (11-cis-RDHs), prior to the chromophore rejoining with the visual pigment apo-proteins. The RDH5 gene encodes a dehydrogenase that is responsible for the majority of RDH activity. In humans, mutations in this gene are associated with fundus albipunctatus, a disease expressed by delayed dark adaptation of both cones and rods. In this report, an animal model for this disease, 11-cis-rdh-/- mice, was used to investigate the flow of retinoids after a bleach, and microsomal membranes from the retinal pigment epithelium of these mice were employed to characterize remaining enzymatic activities oxidizing 11-cis-retinol. Lack of 11-cis-RDH leads to an accumulation of cis-retinoids, particularly 13-cis-isomers. The analysis of 11-cis-rdh-/- mice showed that the RDH(s) responsible for the production of 11-cis-retinal displays NADP-dependent specificity toward 9-cis- and 11-cis-retinal but not 13-cis-retinal. The lack of 13-cis-RDH activity could be a reason why 13-cis-isomers accumulate in the retinal pigment epithelium of 11-cis-rdh-/- mice. Furthermore, our results provide detailed characterization of a mouse model for the human disease fundus albipunctatus and emphasize the importance of 11-cis-RDH in keeping the balance between different components of the retinoid cycle
Cloning and expression of a cDNA encoding bovine retinal pigment epithelial 11-cis retinol dehydrogenase
Item does not contain fulltex