19 research outputs found

    The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part VI: IceCube-Gen2, the Next Generation Neutrino Observatory

    Get PDF
    Papers on research & development towards IceCube-Gen2, the next generation neutrino observatory at South Pole, submitted to the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the IceCube-Gen2 Collaboration

    Physiology and Ecology of Nitrogen Nutrition

    No full text

    A Search for Neutrino Emission from Fast Radio Bursts with Six Years of IceCube Data

    Get PDF
    We present a search for coincidence between IceCube TeV neutrinos and fast radio bursts (FRBs). During the search period from 2010 May 31 to 2016 May 12, a total of 29 FRBs with 13 unique locations have been detected in the whole sky. An unbinned maximum likelihood method was used to search for spatial and temporal coincidence between neutrinos and FRBs in expanding time windows, in both the northern and southern hemispheres. No significant correlation was found in six years of IceCube data. Therefore, we set upper limits on neutrino fluence emitted by FRBs as a function of time window duration. We set the most stringent limit obtained to date on neutrino fluence from FRBs with an E−2E^{-2} energy spectrum assumed, which is 0.0021 GeV cm−2^{-2} per burst for emission timescales up to \textasciitilde102^2 seconds from the northern hemisphere stacking search

    Constraints on Galactic Neutrino Emission with Seven Years of IceCube Data

    No full text
    The origins of high-energy astrophysical neutrinos remain a mystery despite extensive searches for their sources. We present constraints from seven years of IceCube Neutrino Observatory muon data on the neutrino flux coming from the Galactic plane. This flux is expected from cosmic-ray interactions with the interstellar medium or near localized sources. Two methods were developed to test for a spatially extended flux from the entire plane, both of which are maximum likelihood fits but with different signal and background modeling techniques. We consider three templates for Galactic neutrino emission based primarily on gamma-ray observations and models that cover a wide range of possibilities. Based on these templates and in the benchmark case of an unbroken E -2.5 power-law energy spectrum, we set 90% confidence level upper limits, constraining the possible Galactic contribution to the diffuse neutrino flux to be relatively small, less than 14% of the flux reported in Aartsen et al. above 1 TeV. A stacking method is also used to test catalogs of known high-energy Galactic gamma-ray sources

    Neutrino interferometry for high-precision tests of Lorentz symmetry with IceCube

    No full text
    Lorentz symmetry is a fundamental spacetime symmetry underlying both the standard model of particle physics and general relativity. This symmetry guarantees that physical phenomena are observed to be the same by all inertial observers. However, unified theories, such as string theory, allow for violation of this symmetry by inducing new spacetime structure at the quantum gravity scale. Thus, the discovery of Lorentz symmetry violation could be the first hint of these theories in nature. Here we report the results of the most precise test of spacetime symmetry in the neutrino sector to date. We use high-energy atmospheric neutrinos observed at the IceCube Neutrino Observatory to search for anomalous neutrino oscillations as signals of Lorentz violation. We find no evidence for such phenomena. This allows us to constrain the size of the dimension-four operator in the standard-model extension for Lorentz violation to the 10−28 level and to set limits on higher-dimensional operators in this framework. These are among the most stringent limits on Lorentz violation set by any physical experiment

    The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part V: Solar flares, Supernovae, Event reconstruction, Education & Outreach

    Get PDF
    Papers on solar flares, supernovae, event reconstruction and education & outreach, submitted to the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the IceCube Collaboratio

    The IceCube Neutrino Observatory - Contributions to ICRC 2015 Part III: Cosmic Rays

    Get PDF
    Papers on cosmic rays submitted to the 34th International Cosmic Ray Conference (ICRC 2015, The Hague) by the IceCube Collaboration

    The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part IV: Searches for Beyond the Standard Model Physics

    Get PDF
    Papers on searches for beyond the standard model physics, submitted to the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the IceCube Collaboratio

    The IceCube Neutrino Observatory - Contributions to ICRC 2017 Part III: Cosmic Rays

    Get PDF
    Papers on cosmic-ray measurements submitted to the 35th International Cosmic Ray Conference (ICRC 2017, Busan, South Korea) by the IceCube Collaboratio
    corecore