72 research outputs found

    Complex faulting deduced from broadband modeling of the 28 February 1990 Upland earthquake (M_L = 5.2)

    Get PDF
    The 1990 Upland earthquake was one of the first sizable local events to be recorded broadband at Pasadena, where the Green's functions appropriate for the path are known from a previous study. The synthetics developed in modeling the 1988 Upland sequence were available for use in rapid assessment of the activity. First-motion studies from the Caltech-USGS array data gave two solutions for the 1990 main shock based on the choice of regional velocity models. Although these focal mechanisms differ by less than 5° in strike and 20° rake, it proved possible to further constrain the solution using these derived Green's functions and a three-component waveform inversion scheme. We obtain from long-period waves a fault-plane solution of θ = 216°, δ = 77°, λ = 5.0°, M_0 = 2.5 × 10^(24) dyne-cm, depth = 6 km, and a source duration of 1.2 sec, for which the orientation and source depth are in good agreement with the first-motion results of Hauksson and Jones (1991). Comparisons of the broadband displacement records with the high-pass Wood-Anderson simulations suggests the 1990 earthquake was a complicated event with a strong asperity at depth. Double point-source models indicate that about 30 per cent of the moment was released from a 9-km deep asperity following the initial source by 0.0 to 0.5 sec. Our best-fitting distributed fault model indicates that the timing of our point-source results is feasible assuming a reasonable rupture velocity. The rupture initiated at a depth of about 6 km and propagated downward on a 3.5 by 3.5 km (length by width) fault. Both the inversion of long-period waves and the distributed fault modeling indicate that the main shock did not rupture the entire depth extent of the fault defined by the aftershock zone. A relatively small asperity (about 1.0 km^2) with a greater than 1 kbar stress drop controls the short-period Wood-Anderson waveforms. This asperity appears to be located in a region where seismicity shows a bend in the fault plane

    Broadband modeling of local earthquakes

    Get PDF
    Three-component broadband waveforms of two small earthquakes near Upland, California, recorded on the Pasadena broadband, high dynamic range instrument, were modeled to obtain useful Green's functions for this path and to examine the sensitivity of the synthetic seismograms to perturbations of the crustal model. We assumed that the source of each event was both simple and known, as determined from the Caltech-USGS array first motions. A trapezoidal time function was chosen to fit the width of the direct S wave. Generalized rays, reflectivity, and finite-difference techniques were used to compute the synthetic seismograms. We found that a simple layer over a half-space model is an adequate approximation of the upper crust along this profile. In particular, the waveforms are controlled by a relatively slow, 4-km-thick surficial layer (α = 4.5km-s^(−1), β = 2.6 km-s^(−1)) over a faster layer (α = 5.9 km-s^(−1), β = 3.5 km-s^(−1)). The relative amplitudes of direct and multiple S indicate that the main shock occurred at a depth of 6 km, while the aftershock occurred at a depth of 8 to 9 km. Sensitivity analyses indicate that for distances less than 50 km and for periods longer than 1 sec, the synthetic seismograms are not very sensitive to perturbations of the deep crustal structure. Analysis of upper crustal model perturbations revealed that the surficial layer is between 3 to 5 km thick. In addition, the contact between this layer and the underlying material can be smoothed with a 2-km-wide velocity gradient without adversely affecting the fit to the data. Two-dimensional finite-difference calculations show that a ridge structure beneath the recorder acts as a lowpass filter (the lower frequency phases are largely unaffected). Other two-dimensional models with ridges between the source and receiver clearly did not fit the data. Synthetic seismograms computed for the best fitting model were used to estimate a long-period moment of (6 ± 2) × 10^(22) dyne-cm (M_L = 4.6) and 1 × 10^(22) dyne-cm (M_L = 3.7) with identical triangular source-time durations of 0.3 sec. Assuming the same fault dimension of 0.4 km from standard scaling laws, stress drop estimates of 410 and 70 bars are obtained for the two events, respectively. Generally, we found that it is possible to reproduce local waveforms at frequencies up to 1 Hz without a complete knowledge of fine structural detail. Resulting Green's functions can be useful in studying historic events, and in simulations of large events from a given source region

    Moment tensor inversions of icequakes on Gornergletscher, Switzerland

    Get PDF
    We have determined seismic source mechanisms for shallow and intermediate-depth icequake clusters recorded on the glacier Gornergletscher, Switzerland, during the summers of 2004 and 2006. The selected seismic events are part of a large data set of over 80,000 seismic events acquired with a dense seismic network deployed in order to study the yearly rapid drainage of Gornersee lake, a nearby ice-marginal lake. Using simple frequency and distance scaling and Green’s functions for a homogeneous half-space, we calculated moment tensor solutions for icequakes with M_w-1.5 using a full-waveform inversion method usually applied to moderate seismic events (M_w>4) recorded at local to regional distances (≈50–700 km). Inversions from typical shallow events are shown to represent tensile crack openings. This explains well the dominating Rayleigh waves and compressive first motions observed at all recording seismograms. As these characteristics can be observed in most icequake signals, we believe that the vast majority of icequakes recorded in the 2 yr is due to tensile faulting, most likely caused by surface crevasse openings. We also identified a shallow cluster with somewhat atypical waveforms in that they show less dominant Rayleigh waves and quadrantal radiation patterns of first motions. Their moment tensors are dominated by a large double-couple component, which is strong evidence for shear faulting. Although less than a dozen such icequakes have been identified, this is a substantial result as it shows that shear faulting in glacier ice is generally possible even in the absence of extreme flow changes such as during glacier surges. A third source of icequakes was located at 100 m depth. These sources can be represented by tensile crack openings. Because of the high-hydrostatic pressure within the ice at these depths, these events are most likely related to the presence of water lenses that reduce the effective stress to allow for tensile faulting

    Moment tensors for rapid characterization of megathrust earthquakes: the example of the 2011 M9 Tohoku-oki, Japan earthquake

    Get PDF
    The rapid detection and characterization of megathrust earthquakes is a difficult task given their large rupture zone and duration. These events produce very strong ground vibrations in the near field that can cause weak motion instruments to clip, and they are also capable of generating large-scale tsunamis. The 2011 M9 Tohoku-oki earthquake that occurred offshore Japan is one member of a series of great earthquakes for which extended geophysical observations are available. Here, we test an automated scanning algorithm for great earthquakes using continuous very long-period (100-200 s) seismic records from K-NET strong-motion seismograms of the earthquake. By continuously performing the cross-correlation of data and Green's functions (GFs) in a moment tensor analysis, we show that the algorithm automatically detects, locates and determines source parameters including the moment magnitude and mechanism of the great Tohoku-oki earthquake within 8 min of its origin time. The method does not saturate. We also show that quasi-finite-source GFs, which take into account the effects of a finite-source, in a single-point source moment tensor algorithm better fit the data, especially in the near-field. We show that this technique allows the correct characterization of the earthquake using a limited number of stations. This can yield information usable for tsunami early warnin

    Modeling of Energy Amplification Recorded within Greater Los Angeles Using Irregular Structure

    Get PDF
    We have investigated energy amplification observed within Greater Los Angeles basin by analyzing regional waveforms recorded from several Nevada Test Site (NTS) nuclear explosions. Although the stations are located nearly at the same azimuth (distances ranging from 350 to 400 km), the seismograms recorded in Compton (the central part of the basin), Long Beach (the southern edge of the basin), and downtown Los Angeles are remarkably different, even for a common explosion. Following the onset of L_g waves, the Long Beach sites have recorded surface waves for more than 100 sec. From one explosion, the sites within downtown Los Angeles have recorded seismograms with strong 3-sec surface waves. These waves are not observed on the seismograms recorded in the neighboring hard-rock site California Institute of Technology (CIT) station. Thus, they must have been generated by local wave guides. Numerically, we modeled these 3-sec waves by convolving the CIT seismogram with the response of a sedimentary strata dipping gently (about 6°) from CIT toward downtown. We also examined the irregular basin effect by analyzing the variation of cumulative temporal energy across the basin relative to the energy recorded at CIT from the same explosion. Variation up to a factor of 30 was observed. To model the energy variation that is caused by extended surface waves in the Long Beach area, we used numerically simulated site transfer functions (STF) from a NNE-SSW oriented two-dimensional basin structure extending from Montebello to Palos Verdes that included low-velocity sedimentary material in the uppermost layers. These STFs were convolved with the CIT seismogram recorded from the MAST explosion. To simulate elongated duration of surface waves, we introduced in the upper sedimentary structure some discontinuous microbasin structures of varying size, each microbasin delaying the seismic waves propagating through them. Consequently, the surface-reflected phases through these structures are delayed and reflected into the upper medium by the underlying interfaces. This mechanism helps delayed energy to appear at a later time and result in a longer time duration at sites located at southern edge of the basin

    Impact of Broadband Seismology on the Understanding of Strong Motions

    Get PDF
    Most analyses of strong motion attenuation assume simple whole-space type geometrical spreading, namely (1/R) or its modified form e^(−kR/R). However, broadband data presently becoming available suggests a more complex behavior with substantial crustal effects. Events such as the Sierra Madre event, M = 5.8, triggered the strong motion channels at all of the TERRAscope stations allowing for 0.01-sec sampling of the wavefield. We find that most of the well-defined crustal bodywave arrivals defined and modeled in the 1 to 0.1-hz bandpass also contain high-frequency energy. By comparing the triggered channels with the continuous channels we see that several of the more distant stations triggered on the depth phase sP_(m)P. These phases as well as the depth phase sS_(m)S are obvious in velocity and quite apparent in accelerations. Our best models for Southern California contain a relatively thick low-velocity layer at the surface, roughly 5 km thick with shear velocities below 3 km/sec. This layer or zone, because it appears to vary considerably, controls the wavefield at nearly all frequencies out to about 60 km and yields attenuation decay faster than (1/R). At large ranges the lower crustal triplications dominate and the attenuation curve flattens. Adding random scatters to these layered models adds additional complexity but does not alter the basic flat-layer predictions

    The puzzle of the 1996 Bardarbunga, Iceland, Earthquake: No volumetric component in the source mechanism

    Get PDF
    A volcanic earthquake with Mw 5:6 occurred beneath the Bárdarbunga caldera in Iceland on 29 September 1996. This earthquake is one of a decade-long sequence of M 5 events at Bárdarbunga with non-double-couple mechanisms in the Global Centroid Moment Te
    • …
    corecore