17 research outputs found
Reinvestigating 2,5-di(pyridin-2-yl)pyrazine ruthenium complexes: Selective deuteration and Raman spectroscopy as tools to probe ground and excited-state electronic structure in homo- and heterobimetallic complexes
The mono- (1) and dinuclear (2) ruthenium(II) bis(2,2'-bipyridine) complexes of 2,5-di(pyridin-2-yl)pyrazine (2,5-dpp), for which the UV/Vis absorption and emission as well as electrochemical properties have been described earlier, are reinvestigated here by resonance, surface enhanced and transient resonance Raman spectroscopy together with selective deuteration to determine the location of the lowest lying excited metal to ligand charge transfer ((MLCT)-M-3) states. The ground state absorption spectrum of both the mono- and dinuclear complexes are characterised by resonance Raman spectroscopy. The effect of deuteration on emission lifetimes together with the absence of characteristic bipy anion radical modes in the transient Raman spectra for both the mono- and dinuclear complexes bridged by the 2,5-dpp ligand confirms that the excited state is 2,5-dpp based; however DFT calculations and the effect of deuteration on emission lifetimes indicate that the bipy based MLCT states contribute to excited state deactivation. Resonance Raman and surface enhanced Raman spectroscopic (SERS) data for 1 and 2 are compared with that of the heterobimetallic complexes [Ru(bipy)(2)(2,5-dpp)PdCl2](2+) 3 and [Ru(bipy)(2)(2,5-dpp)PtCl2](2+) 4. The SERS data for 1 indicates that a heterobimetallic Ru-Au complex forms in situ upon addition of 1 to a gold colloid
Gene expression profiling in an in vitro model of angiogenesis.
In the present study we have used a novel, comprehensive mRNA profiling technique (GeneCalling) for determining differential gene expression profiles of human endothelial cells undergoing differentiation into tubelike structures. One hundred fifteen cDNA fragments were identified and shown to represent 90 distinct genes. Although some of the genes identified have previously been implicated in angiogenesis, potential roles for many new genes, including OX-40, white protein homolog, KIAA0188, a homolog of angiopoietin-2, ADAMTS-4 (aggrecanase-1), and stanniocalcin were revealed. Support for the biological significance was confirmed by the abrogation of the changes in the expression of angiogenesis inhibitors and in situ hybridization studies. This study has significantly extends the molecular fingerprint of the changes in gene expression that occur during endothelial differentiation and provides new insights into the potential role of a number of new molecules in angiogenesis
Ligand Exchange and Spin State Equilibria of FeII(N4Py) and Related Complexes in Aqueous Media
We report the characterization and solution chemistry of a series of FeII complexes based on the pentadentate ligands N4Py (1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)methanamine), MeN4Py (1,1-di(pyridin-2-yl)-N,N-bis(pyridin-2-ylmethyl)ethanamine), and the tetradentate ligand Bn-N3Py (N-benzyl-1,1-di(pyridin-2-yl)-N-(pyridin-2-ylmethyl)methanamine) ligands, i.e., [Fe(N4Py)(CH3CN)](ClO4)2 (1), [Fe(MeN4Py)(CH3CN)](ClO4)2 (2), and [Fe(Bn-N3Py)(CH3CN)2](ClO4)2 (3), respectively. Complexes 2 and 3 are characterized by X-ray crystallography, which indicates that they are low-spin FeII complexes in the solid state. The solution properties of 1â3 are investigated using 1H NMR, UV/vis absorption, and resonance Raman spectroscopies, cyclic voltammetry, and ESI-MS. These data confirm that in acetonitrile the complexes retain their solid-state structure, but in water immediate ligand exchange of the CH3CN ligand(s) for hydroxide or aqua ligands occurs with full dissociation of the polypyridyl ligand at low (<3) and high (>9) pH. pH jumping experiments confirm that over at least several minutes the ligand dissociation observed is fully reversible for complexes 1 and 2. In the pH range between 5 and 8, complexes 1 and 2 show an equilibrium between two different species. Furthermore, the aquated complexes show a spin equilibrium between low- and high-spin states with the equilibrium favoring the high-spin state for 1 but favoring the low-spin state for 2. Complex 3 forms only one species over the pH range 4â8, outside of which ligand dissociation occurs. The speciation analysis and the observation of an equilibrium between spin states in aqueous solution is proposed to be the origin of the effectiveness of complex 1 in cleaving DNA in water with 3O2 as terminal oxidant.