6 research outputs found

    Oxygen Sensing Difluoroboron Dinaphthoylmethane Polylactide

    No full text
    Dual emissive properties of solid-state difluoroboron β-diketonate-poly­(lactic acid) (BF<sub>2</sub>bdk-PLA) materials have been utilized as biological oxygen sensors. Dyes with red-shifted absorption and emission are important for multiplexing and <i>in vivo</i> imaging, thus hydroxyl-functionalized dinaphthoylmethane initiators and dye-PLA conjugates BF<sub>2</sub>dnm­(X)­PLA (X = H, Br, I) with extended conjugation were synthesized. The luminescent materials show red-shifted absorbance (∼435 nm) and fluorescence tunability by molecular weight. Fluorescence colors range from yellow (∼530 nm) in 10–12 kDa polymers to green (∼490 nm) in 20–30 kDa polymers. Room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF) are present under a nitrogen atmosphere. For the iodine-substituted derivative, BF<sub>2</sub>dnm­(I)­PLA, clearly distinguishable fluorescence (green) and phosphorescence (orange) peaks are present, making it ideal for ratiometric oxygen-sensing and imaging. Bromide and hydrogen analogues with weaker relative phosphorescence intensities and longer phosphorescence lifetimes can be used as highly sensitive, concentration independent, lifetime-based oxygen sensors or for gated emission detection. BF<sub>2</sub>dnm­(I)­PLA nanoparticles were taken up by T41 mouse mammary cells and successfully detected differences in oxygen levels during <i>in vitro</i> ratiometric imaging

    Discovery of Manassantin A Protein Targets Using Large-Scale Protein Folding and Stability Measurements

    No full text
    Manassantin A is a natural product that has been shown to have anticancer activity in cell-based assays, but has a largely unknown mode-of-action. Described here is the use of two different energetics-based approaches to identify protein targets of manassantin A. Using the stability of proteins from rates of oxidation technique with an isobaric mass tagging strategy (iTRAQ-SPROX) and the pulse proteolysis technique with a stable isotope labeling with amino acids in cell culture strategy (SILAC-PP), over 1000 proteins in a MDA-MB-231 cell lysate grown under hypoxic conditions were assayed for manassantin A interactions (both direct and indirect). A total of 28 protein hits were identified with manassantin A-induced thermodynamic stability changes. Two of the protein hits (filamin A and elongation factor 1α) were identified using both experimental approaches. The remaining 26 hit proteins were only assayed in either the iTRAQ-SPROX or the SILAC-PP experiment. The 28 potential protein targets of manassantin A identified here provide new experimental avenues along which to explore the molecular basis of manassantin A’s mode of action. The current work also represents the first application iTRAQ-SPROX and SILAC-PP to the large-scale analysis of protein–ligand binding interactions involving a potential anticancer drug with an unknown mode-of-action

    Synthesis and Biological Evaluation of Manassantin Analogues for Hypoxia-Inducible Factor 1α Inhibition

    No full text
    To cope with hypoxia, tumor cells have developed a number of adaptive mechanisms mediated by hypoxia-inducible factor 1 (HIF-1) to promote angiogenesis and cell survival. Due to significant roles of HIF-1 in the initiation, progression, metastasis, and resistance to treatment of most solid tumors, a considerable amount of effort has been made to identify HIF-1 inhibitors for treatment of cancer. Isolated from <i>Saururus cernuus</i>, manassantins A (<b>1</b>) and B (<b>2</b>) are potent inhibitors of HIF-1 activity. To define the structural requirements of manassantins for HIF-1 inhibition, we prepared and evaluated a series of manassantin analogues. Our SAR studies examined key regions of manassantin’s structure in order to understand the impact of these regions on biological activity and to define modifications that can lead to improved performance and drug-like properties. Our efforts identified several manassantin analogues with reduced structural complexity as potential lead compounds for further development. Analogues <b>MA04</b>, <b>MA07</b>, and <b>MA11</b> down-regulated hypoxia-induced expression of the HIF-1α protein and reduced the levels of HIF-1 target genes, including cyclin-dependent kinase 6 (Cdk6) and vascular endothelial growth factor (VEGF). These findings provide an important framework to design potent and selective HIF-1α inhibitors, which is necessary to aid translation of manassantin-derived natural products to the clinic as novel therapeutics for cancers

    Synthesis and Biological Evaluation of Manassantin Analogues for Hypoxia-Inducible Factor 1α Inhibition

    No full text
    To cope with hypoxia, tumor cells have developed a number of adaptive mechanisms mediated by hypoxia-inducible factor 1 (HIF-1) to promote angiogenesis and cell survival. Due to significant roles of HIF-1 in the initiation, progression, metastasis, and resistance to treatment of most solid tumors, a considerable amount of effort has been made to identify HIF-1 inhibitors for treatment of cancer. Isolated from <i>Saururus cernuus</i>, manassantins A (<b>1</b>) and B (<b>2</b>) are potent inhibitors of HIF-1 activity. To define the structural requirements of manassantins for HIF-1 inhibition, we prepared and evaluated a series of manassantin analogues. Our SAR studies examined key regions of manassantin’s structure in order to understand the impact of these regions on biological activity and to define modifications that can lead to improved performance and drug-like properties. Our efforts identified several manassantin analogues with reduced structural complexity as potential lead compounds for further development. Analogues <b>MA04</b>, <b>MA07</b>, and <b>MA11</b> down-regulated hypoxia-induced expression of the HIF-1α protein and reduced the levels of HIF-1 target genes, including cyclin-dependent kinase 6 (Cdk6) and vascular endothelial growth factor (VEGF). These findings provide an important framework to design potent and selective HIF-1α inhibitors, which is necessary to aid translation of manassantin-derived natural products to the clinic as novel therapeutics for cancers

    Fluorescence Linked Enzyme Chemoproteomic Strategy for Discovery of a Potent and Selective DAPK1 and ZIPK Inhibitor

    No full text
    DAPK1 and ZIPK (also called DAPK3) are closely related serine/threonine protein kinases that regulate programmed cell death and phosphorylation of non-muscle and smooth muscle myosin. We have developed a fluorescence linked enzyme chemoproteomic strategy (FLECS) for the rapid identification of inhibitors for any element of the purinome and identified a selective pyrazolo­[3,4-<i>d</i>]­pyrimidinone (HS38) that inhibits DAPK1 and ZIPK in an ATP-competitive manner at nanomolar concentrations. In cellular studies, HS38 decreased RLC20 phosphorylation. In <i>ex vivo</i> studies, HS38 decreased contractile force generated in mouse aorta, rabbit ileum, and calyculin A stimulated arterial muscle by decreasing RLC20 and MYPT1 phosphorylation. The inhibitor also promoted relaxation in Ca<sup>2+</sup>-sensitized vessels. A close structural analogue (HS43) with 5-fold lower affinity for ZIPK produced no effect on cells or tissues. These findings are consistent with a mechanism of action wherein HS38 specifically targets ZIPK in smooth muscle. The discovery of HS38 provides a lead scaffold for the development of therapeutic agents for smooth muscle related disorders and a chemical means to probe the function of DAPK1 and ZIPK across species

    Fluorescence Linked Enzyme Chemoproteomic Strategy for Discovery of a Potent and Selective DAPK1 and ZIPK Inhibitor

    No full text
    DAPK1 and ZIPK (also called DAPK3) are closely related serine/threonine protein kinases that regulate programmed cell death and phosphorylation of non-muscle and smooth muscle myosin. We have developed a fluorescence linked enzyme chemoproteomic strategy (FLECS) for the rapid identification of inhibitors for any element of the purinome and identified a selective pyrazolo­[3,4-<i>d</i>]­pyrimidinone (HS38) that inhibits DAPK1 and ZIPK in an ATP-competitive manner at nanomolar concentrations. In cellular studies, HS38 decreased RLC20 phosphorylation. In <i>ex vivo</i> studies, HS38 decreased contractile force generated in mouse aorta, rabbit ileum, and calyculin A stimulated arterial muscle by decreasing RLC20 and MYPT1 phosphorylation. The inhibitor also promoted relaxation in Ca<sup>2+</sup>-sensitized vessels. A close structural analogue (HS43) with 5-fold lower affinity for ZIPK produced no effect on cells or tissues. These findings are consistent with a mechanism of action wherein HS38 specifically targets ZIPK in smooth muscle. The discovery of HS38 provides a lead scaffold for the development of therapeutic agents for smooth muscle related disorders and a chemical means to probe the function of DAPK1 and ZIPK across species
    corecore